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Abstract 

The present study is part of an identifying programme for constitutive parameters in damaged materials, termed the “effective 
parameters”. The programme starting point is that the experimental response depends not only on constitutive parameters, but 
also on structural mechanics and interaction with the test-machine. In previous studies, it was showed how the load-
displacement diagram of compressed concrete cylinders is affected by crack propagation, through the resistant structure 
modification. Moreover, it was analytically demonstrated that the effective stress ( effσ )-effective strain ( effε ) curve exhibits 

a strictly positive derivative at the point corresponding to the average stress (σ )-average strain ( ε ) curve peak. Finally, it 
was proposed a new identification procedure which provided satisfactory results for cylindrical specimens of varying 
slendernesses, giving monotone strictly non-decreasing and size-effect insensitive eff effσ ε−  curves. In the present paper, the 
proposed identification procedure is tested on specimens of the same geometry, but with different failure mechanisms. 
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1 Introduction 

In order to derive a constitutive law in uniaxial compression from experimental data, it is 
common practice to define the average stress σ  and the average strain ε  as shown in Fig. 1. 
The σ -ε  relationship in Fig. 1 is known as uniaxial constitutive law for monotone strain 
processes. The term “constitutive” is associated with the σ -ε  relationship since this 
relationship is considered as representative of the mechanic behaviour of the material. 
However, one can make the following remarks concerning the choice of this term: 

• The σ -ε  law in Fig. 1 is size-effect sensitive, while a constitutive law should not exhibit 
a size effect. 

• The identification procedure in Fig. 1 consists of a mere change of scale. Thus, 
experimental and identified curves are homothetic (Fig. 1). In particular, they both exhibit 
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a softening behaviour. The softening behaviour in the N v−  relationship has a well 
known physical meaning, linked to the structure instability. On the contrary, it is not 
possible to associate a physical meaning with the softening behaviour of a material 
response (σ ε−  relationship), as the concept of instability loses its sense in the 
infinitesimal neighbourhood of a point (Ref. [1]). Besides, from the beginning of the 20th 
century forth, strain-softening has been widely regarded as inadmissible by several 
authors (Ref. [2]). 

 

Figure 1: Traditional identification of mono-axial constitutive law by experimental tests. 
 

No exhaustive explanation for these inconsistencies has been provided by the traditional 
identification procedure. In Ref. [1] they are related to the impossibility of performing 
mechanical tests on the material directly: the object in testing is never the material, but a 
specimen, that is to say, a structure interacting with the test-machine (Fig. 1). Thus, 
experimental results univocally characterise the behaviour of the specimen-test machine 
system, and not of the material. In other words, the softening branch has a meaning that is 
only linked to the structural instability. This branch cannot provide information on the 
material constitutive behaviour, but through an identifying model. 

To identify the constitutive laws starting from the experimental results it is necessary to 
evaluate all factors influencing a test result (Ref. [1]). Indeed, since the specimen is a 
structure interacting with the test-machine, the experimental results (R) depend not only on 
the constitutive properties (C), as shown in Fig. 2, but also on the structural mechanics (S), the 
interactions between test-machine and specimen (I), and the test-machine metrological 
characteristics (M): 
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Figure 2: Factors influencing the experimental results. 

 

On the base of partially analogous considerations, Rosati et. al. (Ref. [4]) have recently 
proposed a complete response for concrete loaded in tension. 

It is then necessary to define an identifying procedure from experimental data to material 
behaviour (inverse problem), which is not affected by the remarks concerning the approach in 
Fig. 1. 

A proposal for concrete in monotone uniaxial compression is given in Ref. [5]. In the present 
paper, an experimental validation to the identifying procedure proposed in Ref. [5] is 
presented. 

2 Identification approach of σσσσ-εεεε effective behaviour in mono-axial 
compression 

2.1 Identification of the effective stress 

Name CK , SK , IK , and MK  the weighed contributions assumed by C, S, I, and M, 
respectively, in the definition of R (Eq. (1)): 

 CC K R= ,     SS K R= ,     II K R= ,     MM K R= . (2) 
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Substituting the above equalities in Eq. (1), one can obtain a condition of norm to one for the 
sum of all the weighed contributions: 

 1C S I MK K K K+ + + = . (3) 

All the contributions but the constitutive behaviour can be grouped in a single factor K: 

 S I MK K K K= + + . (4) 

The position in Eq. (4) allows us to replace the relationship following from the identifying 
procedure in Fig. 1: 

 C R≡ , (5) 

with the following relationship: 

 ( )1C K R= − . (6) 

 

Figure 3: Qualitative repartition of R at the beginning without stabilising cycle (a'), at the 
beginning with stabilising cycle (a''), at an intermediate load step (b), and at the end of the test 
(c). 

 

By means of Eq. (6), it is possible to evaluate the constitutive properties, taking into account 
the behaviour of the specimen-test machine system, which is represented by the parameter K. 
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This approach is formally more correct than the approach leading to Eq. (5). Nevertheless, it 
is not of immediate use for identifying constitutive properties, since ( )C CK K R= , 

( )S SK K R= , ( )I IK K R= , and ( )M MK K R=  are, generally speaking, load-step functions. 
That is to say, 

 ( )K K R=  (7) 

is a load-step function, and not a constant of the performing test. 

The variation law of K is not known a priori. A plausible repartition of R at the beginning 
without stabilising cycle (a'), at the beginning with stabilising cycle (a''), at an intermediate 
load step (b), and at the end of the test (c) is given in Fig. 3. It must be incidentally recalled 
that a stabilising cycle is an unloading-reloading cycle effectuated for a preloading equal to 
about the 10% of the maximal presumed load. The stabilising cycle is done in order to limit 
the influence of the specimen-test machine interaction and test-machine metrological 
properties on the experimental result. 

In conclusion, it is not possible to establish a homothetic correspondence between the 
experimental load-displacement relationship and the uniaxial constitutive stress-strain 
relationship. Moreover, since Eq. (7) is not of objective determination, K can only be 
estimated, with regard to the material scale. This involves the identification of an effective 
response, and not of a constitutive response in its rigorous meaning. 

The main consequence of Eqs (6, 7) is the loss of the traditional identity between the 
experimental and the effective curve shape. In other words, the effective curve may not 
exhibit the typical softening behaviour of the experimental curve. Since it is impossible to 
associate a physical meaning with the strain-softening behaviour of a material response, one 
can rightly expect that the identified effective laws is monotone nondecreasing for any 
material. 

An analysis of the reciprocal ratios between CK , SK , IK , and MK  for compressed concrete 
cylinders (Ref. [1]) showed that it is possible to assume SK K≅ . Thus, the large structural 
scheme variation of concrete cylinders, following from the propagation of dominant bi-cone 
shaped cracks (Fig. 4c), is preponderant in comparison to the other addends in Eq. (4). As 
shown in Fig. 4c, the failure mechanism of concrete cylinders isolates an internal core, in 
which crack propagation never occurred, and a volume of incoherent material. This involves a 
resistant structure with modifying geometry at a general load step. 

To identify the scale factor of the σ  axis with respect to the N axis (Fig. 1), it is fundamental 
to introduce a parameter whose dimensions are those of an area and whose incremental law, 
in the assumption that SK K≅ , is linked to the structural scheme variation. In Ref. [1], this 
parameter has be termed the resistant area resA , as to indicate that this area is a quantity 
depending from the variation of resistant structure. 

In Ref. [1], it was proposed to estimate the resistant area resA  in accordance with the Fracture 
Mechanics with Damage: 

 ( )1res nA A D= − , (8) 
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where D is a scalar. 

 

Figure 4: Aspect of the concrete specimen at the beginning of the test (a), at the end of the test 
(b), and after the removal of all the incoherent material (c). 

 

In accordance with Eq. (8), the effective stress has then been defined as the average stress 
acting on the area resA : 

 eff
res

N
A

σ = . (9) 

Alternatively, the effective stress can be expressed as: 

 n
eff
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A
A

σ σ= . (10) 

The analogy with the manner of operation of the Fracture Mechanics with Damage is limited 
to Eq. (8). Indeed, in the Fracture Mechanics with Damage, D has an analytic formulation and 
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is considered as uniformly distributed on nA . In Ref. [1], ( )D D R=  is experimentally 
evaluated and all the damage is considered as localised in the volume of incoherent material. 

2.1.1 Identification of the damage law 

To evaluate ( )D D R= , two experimental damage laws were employed in Ref. [1]. The first 
damage law, 1D  (Ref. [6]), relates the damage to the percentage variation of the microseismic 
signal velocity V at the current point (set-up of the microseismic test in Fig. 5.a): 

 1
0

1 VD
V

= − , (11) 

where 0V  is the initial microseismic signal velocity. 

The second damage law, 2D  (Ref. [7]), relates the damage to the dissipated energy dW  at the 
current point (Fig. 5.b): 

 2
,

d

d t

WD
W

= , (12) 

where ,d tW  is the total dissipated energy. The evaluation of dW  has been done in accordance 
with the experimental unloading law. 

 

Figure 5: a) Test set-up for the identification of 1D ; b) Evaluation of dW  for the identification 
of 2D . 

 

1D  and 2D  turned out to be very close to each other (Ref. [1]). To identify the effective 
properties, only the 2D  damage law has been used in Ref. [1], since this law is not affected by 
limitations in the survey field. On the contrary, starting from a certain load step, the damage 
parameter 1D  is affected by the noise of the crack propagation so much as to cannot 
appreciate any longer its variation. 
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In Ref. [1], also the specimen defects at the natural state, through the amount of initial 
damage 0D , have been evaluated. To take into account also the amount of initial damage, the 
Eq. (8) has been modified as follows: 

 ( )1res n eqA A D= − , (13) 

where eqD  is the equivalent damage, comprehensive both of the initial damage 0D  and the 
damage 2D  due to the monotone loading. eqD  can be expressed as: 

 ( )( )0 2 0 2 0 21 1 1eqD D D D D D D= − − − = + − . (14) 

The nominal area deprived of the defects at the natural state, termed the reduced nominal area 
nA′ , results from: 

 ( )01n nA A D′ = − . (15) 

2.1.2 Algebraic considerations about the formulation of the effective stress 

In Ref. [5], an interesting information about the sign of the effective stress derivative in the 
effσ -ε  plane is provided, directly rising from the formulation of the effective stress in Eq. 

(9). 

In particular, it has been analytically demonstrated how a point with strictly positive tangent 
in the effσ ε−  curve corresponds to the point with zero tangent in the N v−  curve. This is a 
notable result, since it has been obtained without having introduced any other assumptions on 
the shape of the damage law except the physically justifiable condition of non zero tangent in 
correspondence of the maximal load. 

As regards the sign of the tangent in the effσ ε−  plane for ˆv v> , this depends on the value of 
the ratio ρ, defined as follows: 

 res

res

N A
NA

ρ
′

=
′

, (16) 

where the superscript indicates derivation with respect to the variable v. 

It results: 

 0effd
d
σ
ε

≥           ˆv v∀ > , 0 1ρ≤ ≤  (17′) 

 0effd
d
σ
ε

<           ˆv v∀ > , 1ρ > . (17″) 

In alternative to Eqs (17), one can study the sign for ˆv v>  of the derivative of q, defined as 
follows: 
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( )8

max

max

res

neff

A Nq
A N

σ
σ

= = , (18) 

in which the function q has been expressed as the ratio between the normalised resistant area 
and the normalised load. It follows that: 

 max max2 2
eff res res

eff

N A NAq
N

σ
σ σ

σ
′ ′ ′−′ = − = − . (19) 

From Eq. (19) it can be observed that the sign of q′  too is determined by the ratio ρ. The 
result is: 

 0q′ >           ˆv v∀ > , 1ρ > ; (20′) 

 0q′ ≤           ˆv v∀ > , 0 1ρ≤ ≤ . (20″) 

On the other hand, the sign of q′  follows directly from Eqs (17) and the first equality in Eq. 
(19), which states that the signs of q′  and effσ ′  are unconformable v∀ . 

In conclusion, the sign of effd dσ ε  is surely positive for ˆ0 v v≤ ≤ , whereas it is only known 
when the damage law is known for ˆv v> . 

2.2 Identification of the effective strain 

 

Figure 6: Identification of effε  starting from the known value of effσ . 
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As regards the scale factor of the ε  axis with respect to the v axis (Fig. 1), the effective strain 
effε  has been identified in Ref. [1] considering that only the conservative forces act in a 

generic unloading-reloading cycle. In other words, these cycles should be characterised by 
constant values of resistant area. For this assumption, the instantaneous secant stiffness of the 

effσ - effε  law, tansE α=  (Fig. 6), is taken equal to the average slope of the unloading-
reloading cycle at the current point. Thus, the generic point effσ - effε  results from the 
intersection of the two lines effσ σ=  and sEσ ε= . 

Figure 6 shows the identification of the effective strain effε , starting from the value of 
effective stress effσ , Eqs (9, 8), and the knowledge of the damage law D. 

3 Results of the identification procedure 

The results of a first experimental programme on six cylinders of varying slenderness have 
been provided in Ref. [5]. The main conclusions on the eff effσ ε−  identification procedure are 
summarised in the following points: 

1) The slope of the unloading-reloading cycles is sensibly independent on the slenderness of 
the specimens (Fig. 7). This result supports the assumption for which the parameters 
characterising the unloading-reloading cycles are linked to properties of the material and 
do not depend on the structural mechanics. In other words, the resistant area does not 
change in the unloading-reloading cycles. 

 

Figure 7: Interpolating law of the unloading-reloading cycles average slope variation. 
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2) A strictly positive derivative characterises the effective properties curves in the eff effσ ε−  

plane (Fig. 8). This result directly follows from the experimental ( )q v  function, that 
turned out to be a positive-valued, monotone strictly nonincreasing function. This implies 
that the resistant area decreasing rate is faster than the load decreasing rate, for the 
performed tests. This circumstance and the negative sign between q′  and effσ ′  (Eq. (19)) 
ensure the effective stress derivative to be positive also for ˆv v>  (Eq. 20′′ ). 

 

Figure 8: eff effσ ε−  dispersion range for variable slenderness. 

 

3) All the eff effσ ε−  relationships obtained for the six tested geometries fall within the cyan 
region in Fig. 8 (dispersion range). Since the dispersion range is very little, it can be stated 
that the effective properties curves are size-effect insensitive. 

These results allows us to assert that the two inconsistencies of the traditional identification 
procedure, pointed out in the introduction remarks, fall down with the new identification 
procedure. The eff effσ ε−  relationship seems then to better represent the behaviour of the 
material than the σ ε−  relationship is able to do. 

In this paper, the results of a second experimental programme are presented, as to provide a 
further validation to the identification procedure proposed in Ref. [1]. Also this experimental 
programme was performed in the intent to derive a qualitative and not quantitative 
information. For this reason, the number of the specimens to test was limited to two. 

This second time, the geometry of the two specimens is the same, but they are forced to fail in 
different ways. 
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As well known, a concrete cylinder in uniaxial compression fails with a dominant bi-cone 
shaped crack which enucleates in correspondence of the press plates and propagates towards 
the middle cross-section. To modify the failure mechanism, one of the two specimens was cut 
along its middle cross-section. Before restoring the specimen, three grommets were fixed on 
the middle cross-section (Fig. 9). 

 

Figure 9: Positioning of the three grommets on the cut cylinder. 

 

Figure 10: Crack path for the uncut (a) and the cut (b) cylinder. 

 

The restoration of the specimen has been carried out with mortar. Since the stiffness of the 
grommets is much higher than the stiffness of the concrete, once loaded the specimen the 
three grommets have the function to concentrate the load in correspondence of their fixing 
points. This results in a failure mechanism with the dominant crack enucleating on the middle 
cross-section, starting from the fixing points of the grommets. The final failure surfaces were 
the same in the two cylinders. 

a) b)
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Figure 11: Load-displacement curves for the cut and the uncut cylinder. 

 

Figure 12: Percentage difference from the mean value of load, at intervals of displacement of 
0.08 mm. 
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In Fig 11. the load – displacement experimental curves for the uncut and the cut cylinder are 
shown. The curves in Fig. 11 are almost superimposed as long as the dominant crack does not 
start to propagate. This result confirms that the initial stiffness of the restored specimen is 
almost the same as the initial stiffness of the uncut specimen, stating that the cut and the 
subsequent restoring have not significantly modified the stiffness properties of the cylinder. 

When the dominant crack starts to propagate, the two curves bifurcate, assuming a different 
shape (Fig. 11). The presence of a point of bifurcation confirms that the failure mechanisms 
of the two specimens were actually different, as it was in the Authors aims. 

In Fig. 12, the percentage difference from the mean value of load is quoted for intervals of 
displacement of 0.08 mm. The two local maximums are quoted directly on the plot. The 
maximum percentage difference from the mean value is reached in advanced phase of 
softening (Fig. 12) and is equal to about 17%. The maximum percentage difference in the 
neighborhood of the peak is equal to about 8% (Fig. 12). 

In Fig. 13 the eff effσ ε−  relationships obtained for the two tested cylinders are shown. 

 

Figure 13: Effective stress-effective strain curves for the cut and the uncut cylinder. 

 

In Fig. 14, the percentage difference from the mean value of effective stress is quoted for 
intervals of effective strain of 400 µε . The three local maximums are quoted directly on the 
plot. The percentage difference for the point of the eff effσ ε−  plane corresponding to the first 
local maximum in Fig. 12 (the point near the peak) is plotted in yellow. 
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Figure 14: Percentage difference from the mean value of effective stress, at intervals of 
effective strain of 400 µε . 

 

As it can be appreciated in Fig. 14, the percentage difference from the mean value computed 
in the eff effσ ε−  plane is noticeably lower than the percentage difference from the mean value 
computed in the N v−  plane. 

4 Conclusions 

The two identified eff effσ ε−  curves do not exhibit bifurcation points. This means that the 
identified curve is not sensitive to the change of failure mechanism. The low value of 
percentage difference from the mean value in correspondence of the yellow points in Fig. 14 
confirms this conclusion, since for these points the effect of the different failure mechanism 
reaches a maximum (Fig. 12). This result is very important to give validity to the proposed 
identification procedure, since the independence from the failure mechanism is one of the 
most important requisites for an identifying procedure of material parameters. Moreover, this 
result is as much important as the traditional identifying procedure for constitutive laws in 
uniaxial loading is not insensitive to the change of failure mechanism. 

All the main results of the first experimental programme are confirmed. In particular, the 
eff effσ ε−  relationship exhibits a positive derivative and the dispersion range is very little. 
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