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Soft Core Plane State Structures Under Static Loads Using
GDQFEM and Cell Method
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Abstract: The aim of this work is to study the static behavior of 2D soft core
plane state structures. Deflections and inter-laminar stresses caused by forces can
have serious consequences for strength and safety of these structures. Therefore,
an accurate identification of the variables in hand is of considerable importance for
their technical design. It is well-known that for complex plane structures there is
no analytical solution, only numerical procedures can be used to solve them. In
this study two numerical techniques will be taken mainly into account: the Gen-
eralized Differential Quadrature Finite Element Method (GDQFEM) and the Cell
Method (CM). The former numerical technique is based on the classic Generalized
Differential Quadrature (GDQ) rule and operates differently from the classic Finite
Element Method (FEM). The principal novelty of this paper regards the compari-
son, by means of several numerical applications about soft-core structures, among
GDQFEM, CM and FEM. Such a comparison appears for the first time in the liter-
ature and in this paper.

Keywords: Generalized Differential Quadrature Finite Element Method, Soft-
Core Structures, Sandwich Structures, Cell Method.

1 Introduction

The Finite Element Method (FEM) has always been considered a robust and strong
tool for solving many engineering problems, such as the ones concerning compos-
ite laminated structures. Over the years, many scientists have tried new ways for
analysing these types of structures using faster and more accurate numerical pro-
cedures [Li, Shen, Han, and Atluri (2003); Sladek, Sladek, and Atluri (2004); Han,
Liu, Rajendran, and Atluri (2006); Li and Atluri (2008b,a)]. The main FEM idea
is that a generic domain can be divided into several small parts (called elements)
where the solution is found using a certain field approximation. In this paper a
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Generalized Differential Quadrature Finite Element Method (GDQFEM) is pre-
sented. This numerical technique is based on the Generalized Differential Quadra-
ture (GDQ) method which can solve a differential system of equations on a regular
domain. The most important contributions about GDQ were brought by Shu [Shu
(2000)], nevertheless this technique has expanded over the years. The first seminal
references about the application of GDQ to civil structures are given by the works
[Artioli, Gould, and Viola (2005); Viola, Dilena, and Tornabene (2007); Marzani,
Tornabene, and Viola (2008)]. Subsequently, the authors deepen their knowledge
about GDQ discretization types and convergence rate of the technique on shells
of revolution in the papers [Tornabene and Viola (2009a,b, 2013); Viola, Rossetti,
and Fantuzzi (2012)]. Only recently higher-order theories have been studied for
the static and dynamic analysis of composite multi-layered shells and plates [Torn-
abene and Ceruti (2013a,b); Tornabene and Reddy (2014); Tornabene, Fantuzzi,
Viola, and Carrera (2014)]. GDQFEM works in the same way as FEM, by subdi-
viding the whole domain into several sub-domains of regular and irregular shapes.
The only difference between FEM and GDQFEM is that the system of equations is
solved in the weak or in the strong form, respectively. In fact, both methods have
a discretization procedure and the irregular elements are processed by a mapping
technique. The system of equations is actually solved on a parent domain instead of
the physical one. A good introduction to the GDQFEM can be found in [Fantuzzi
(2013)], where the treatment of the boundary conditions is also reported, which is a
key point of the numerical technique. In addition, in order to understand the prob-
lem of boundary conditions implementation in GDQFEM, the interested reader can
refer to [Chen (1999a,b, 2000, 2003)]. It should be noted that, when the strong
form of the formulated system of equations is solved, the accuracy of the solu-
tion to the problem under consideration is higher than the same solution calculated
starting from a standard weak formulation. It has been proven in [Tornabene, Vi-
ola, and Fantuzzi (2013); Viola, Tornabene, and Fantuzzi (2013a,c)] that using 2D
theories and GDQ method it is possible to have very accurate solutions compared
to 3D FEM. In the present paper, the numerical results obtained with this numeri-
cal technique will be compared to the ones calculated according to the well-known
FEM, the Cell Method (CM) and other results found in literature. As far as the
CM method is concerned, it was initially developed by Tonti [Tonti (2001)]. In the
subsequent years Ferretti made several applications in the works [Ferretti (2001,
2003, 2004a,b,c, 2005); Ferretti, Casadio, and Leo (2008); Ferretti (2009, 2012)].
Recently new applications of CM appeared in literature [Ferretti (2014, 2013a,b)].
Summarizing, this paper is mainly divided into three parts. After a brief introduc-
tion to the problem in the present section, the theoretical development of GDQFEM
is shown in the third section. Finally, some numerical applications are reported in
the fourth section. In particular, the free vibrations of a sandwich beam are anal-
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ysed in two parts. In the beginning the GDQFEM solution is compared with some
literature results where the mechanical properties of the core are fixed. Then, con-
sidering the same structure and varying the core stiffness, the natural frequencies
are shown in order to see the code accuracy in the presence of a highly-soft-core
structure. In the second example another cantilever sandwich beam is worked out
under static loading. In this case the numerical GDQFEM solution is compared to
a CM and FEM solutions. Very good agreement among the results of all the used
methodologies is verified. In conclusion, in order to see the GDQFEM stability
when curved plane structures are investigated, a sandwich circular arch is numeri-
cally solved under static loading and its mode shapes are calculated. To the best of
the authors’ knowledge, the comparison in hand has never appeared in literature.

2 2D elastic problem

This section is devoted to a concise presentation of the well-known general formu-
lation of boundary value problems in plane elasticity. The equilibrium equations
for a 2D elastic body can be derived from 3D elasticity

∂σx

∂x
+

∂τxy

∂y
+ fx = 0

∂τxy

∂x
+

∂σy

∂y
+ fy = 0

(1)

In Eq. 1 σx, σy, τxy are the normal ans shear stresses and fx, fy denote the body
forces. When a plain strain case is considered, the constitutive equations can be
written as

σx = 2Gεx +λ I1ε , σy = 2Gεy +λ I1ε , σz = λ I1ε , τxy = Gγxy (2)

where I1ε = εx + εy is the cubic dilation and G, λ are the shear modulus and the
second Lamé constant, respectively. The kinematic relationships are

εx =
∂u
∂x

, εy =
∂v
∂y

, γxy =
∂u
∂y

+
∂v
∂x

(3)

where u= u(x,y), v= v(x,y) are the displacement components defined on the plane
domain of the structure. In conclusion, using Eq. 3, Eq. 2, Eq. 1 and adding the
inertia forces, the fundamental system of equations in its strong form can be found
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(4)
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In order to solve the differential system of static and dynamic equations at hand,
the boundary conditions have to be enforced. In general boundary conditions can
be kinematic and static kind. The first type, called kinematic boundary condition, is
enforced on the displacements u and v, and the second type, called static boundary
condition, is imposed on the stresses σn and τns which follow the outward unit
normal vector n at a generic point of the boundary. According to the work by
[Viola, Tornabene, and Fantuzzi (2013b)] the normal and shear stresses of a local
reference system nsz can be written as a function of the Cartesian system xyz as

σn = σxn2
x +σyn2

y +2τxynxny

τns = (σy−σx)nxny + τxy
(
n2

x−n2
y
) (5)

It is noted that nx, ny are the direction cosines of the edge of normal n. In other
words nx, ny are the components of the unit vector n.

3 Generalized differential quadrature finite element method

Bn

mB =m

n

Ω(n)

Ω(n)
Ω(m)

Ω(m)

(1)Ω (2)Ω

Figure 1: Multi-domain decomposition with interface boundaries and external
boundaries.

GDQFEM is an advanced version of the multi-domain technique, which subdi-
vides a physical domain into several regular sub-domains (such as rectangles and
squares). However, when curved boundaries and distorted elements are necessary
to approximate the physical problem a mapping technique must be used. Taking
Fig. 1 as a sample mesh composed of four distorted elements, the generic element
Ω(n) must be mapped into a regular domain (parent element) in order to apply the
GDQ method at the master element level. The similarity with FEM is obvious, nev-
ertheless a big difference occurs between the two approaches. In fact, GDQFEM
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is based on the strong form of the differential system of equations, on the con-
trary FEM solves the weak form of the same differential problem. The GDQFEM
requires each sub-domain to be regular like any other low-order finite difference
scheme. Thus, GDQ cannot be applied directly as in regular multi-domain differ-
ential quadrature. The Cartesian coordinate transformation is indicated as

x = x(ξ ,η), y = y(ξ ,η) (6)

where Eq. 6 gives a two-way mapping from the physical space (x,y) to the parent
element space (ξ ,η), and vice versa. For the sake of conciseness, the mathematical
developments of the mapping technique are not reported in the following, but the
interested reader can find all the relationships in detail in a number of works [Bert
and Malik (1996); Shu, Chen, and Du (2000); Xing and Liu (2009); Xing, Liu,
and Liu (2010)]. Once the physical element is mapped into the computational do-
main, GDQ can be applied. The generalized differential quadrature (GDQ) method
is a very powerful numerical technique that permits to evaluate partial and total
derivatives through a sum of functional values multiplied by certain weights. The
interested reader can find a brief review on GDQ applications in [Tornabene (2009,
2012); Viola and Tornabene (2005, 2006, 2009)]. Following the idea of integral
quadrature, the first order derivative of one-variable functions, e.g. f (x), can be
written as

d f (x)
dx

∣∣∣∣
x=xi

= f (1)x (xi) =
N

∑
j=1

ax,(1)
i j f (x j) for i = 1,2, . . . ,N (7)

where ax,(1)
i j represent the weighting coefficients, N is the total number of grid points

x1, x2, . . . , xN in the whole domain and f (x j) is the calculated value of f (x) at the
point x = x j. From Eq. 7 it appears that, when the weighting coefficients are
computed, the derivative of the f (x) function at the point x = xi is given by the sum
of values calculated according to the right-hand of Eq. 7. Thus, it is compulsory to
have a well-defined grid point distribution all over the given domain. Several GDQ
grid distributions samples are reported in [Tornabene and Viola (2008); Tornabene
(2011a,b,c)]. To compute the first order weighting coefficients ax,(1)

i j , the following
algebraic formulae are derived

ax,(1)
i j =

L(1)(xi)

(xi− x j)L(1)(x j)
for i, j = 1,2, . . . ,N and i 6= j

ax,(1)
ii =−

N

∑
k=1,k 6=i

a(1)ik for i = j
(8)
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where the Lagrange interpolation polynomials L were used as test functions

L(1)(xi) =
N

∏
q=1,q6=i

(xq− xi), L(1)(x j) =
N

∏
q=1,q6= j

(xq− x j) (9)

The weighting coefficients of the second and higher order derivatives can be com-
puted from recurrence relationships. A generalized higher order derivative can be
written as

dn f (x)
dxn

∣∣∣∣
x=xi

= f (n)x (xi) =
N

∑
j=1

ax,(n)
i j f (x j)

for i = 1,2, . . . ,N, n = 2,3, . . . ,N−1

(10)

This general approach, as shown in [Tornabene and Viola (2007)], which is based
on the polynomial approximation, allows to write the following weighting coeffi-
cients

ax,(n)
i j = n

(
ax,(n−1)

ii ax,(1)
i j −

ax,(n−1)
i j

xi− x j

)
for i 6= j, n = 2,3, . . . ,N−1

ax,(n)
ii =−

N

∑
k=1,k 6=i

ax,(n)
ik for i = j

(11)

As shown in the works [Tornabene, Marzani, Viola, and Elishakoff (2010); Torn-
abene, Viola, and Inman (2009)], the one-dimensional problem can be directly ex-
tended to the multi-dimensional case for a regular shape, such as a rectangle or a
circle. In general, a function f (x,y) can be defined on the given domain and its val-
ues depend on the points along x and y. In the following, N points along x direction
and M points along y direction are assumed. It is noted that the derivatives of any
order along x and y can be written as

f (n)x (xi,y j) =
∂ (n) f (x,y)

∂xn

∣∣∣∣ x=xi
y=y j

=
N

∑
k=1

ax,(n)
ik f (xk,y j)

for i = 1,2, . . . ,N n = 1,2, . . . ,N−1

f (m)
y (xi,y j) =

∂ (m) f (x,y)
∂ym

∣∣∣∣ x=xi
y=y j

=
M

∑
l=1

ay,(m)
jl f (xi,yl)

for j = 1,2, . . . ,M m = 1,2, . . . ,M−1

(12)

where ax,(n)
ik and ay,(m)

jl are the weighting coefficients of order n and m along x and
y, respectively. Moreover, following the same rule of Eq. 12, the mixed derivative
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can be written as follows

f (n+m)
xy (xi,y j) =

∂ (n+m) f (x,y)
∂xn∂ym

∣∣∣∣ x=xi
y=y j

=
N

∑
k=1

ax,(n)
ik

(
M

∑
l=1

ay,(m)
jl f (xk,yl)

)
for i = 1,2, . . . ,N j = 1,2, . . . ,M

for n = 1,2, . . . ,N−1 m = 1,2, . . . ,M−1

(13)

where ax,(n)
ik and ay,(m)

jl have the same meaning of the ones in Eq. 12.

The aforementioned GDQ procedure is used at the master element level. Consider
a general physical domain that has to be decomposed into elements in order to
capture the domain discontinuities of material and geometry. In particular, the
physical domain Ω is divided into several Ω(n) elements, where n = 1,2, . . . ,ne. It
is worth noticing that Ω(n)∩Ω(m) = /0 and Ω = Ω(1)∪Ω(2)∪·· ·∪Ω(ne). As a result,
there is no relation between the element Ω(n) and Ω(m), they are only connected
among their edges.

A GDQFEM element is made of three groups of points: the domain points, the
boundary points and the corner points. The first set is used for the discretized form
of the fundamental system of equations. In the second set, the external bound-
ary conditions and the inter-element compatibility conditions have to be imposed.
The last group is necessary for the boundary conditions too, but the corner points
must be treated differently due to their belonging to two adjacent edges. For fur-
ther details on how the corner type boundary conditions are considered, the reader
should follow the works [Karami and Malekzadeh (2003); Liu (1999); Zhong and
He (1998); Zhong and Yu (2009)], among others.

Since GDQ is a global collocation method, the stiffness matrix of each element
contains the boundary and domain equations in algebraic form. The assembly pro-
cedure follows the well-known rules of FEM, through the connectivity matrix of the
mesh. Thus, once the assembly procedure is completed, the explicit algebraic form
of a GDQFEM differential system is very similar to a classic GDQ solution [Torn-
abene, Fantuzzi, Viola, and Reddy (2013); Tornabene, Fantuzzi, Viola, and Ferreira
(2013); Ferreira, Viola, Tornabene, Fantuzzi, and Zenkour (2013)]. Hence, the final
static case can be reported in matrix compact form as[

K̄bb K̄bd
K̄db K̄dd

][
Ub
Ud

]
=

[
Qb
Qd

]
(14)

where Ub and Ud indicate the bounded and domain displacement parameters vec-
tors, Qb and Qd represent the vector of the external forces applied at the boundary
and domain points. In other words, they are the boundary and domain loads. Fi-
nally the global stiffness matrix is shown divided into four sub-matrices: K̄bb and
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K̄bd are the matrices of the external boundary and compatibility conditions and K̄db
and K̄dd are the matrices of the fundamental equations (domain equations). For the
sake of clarity, a sample of a GDQFEM global stiffness matrix is represented in
Fig. 2a), for a mesh composed of two elements. In particular the boundary points
are located in the upper part, whereas the domain points are positioned in the lower
part. It is noted that the domain matrices K(1)

dd , K(2)
dd and K(1)

db , K(2)
db are diagonally

dominant. On the contrary the boundary matrices K(1)
bb , K(2)

bb and K(1)
bd , K(2)

bd and
K(1,2)

bb , K(2,1)
bb and K(1,2)

bd , K(2,1)
bd form a full matrix. In fact aside from the boundary

matrices for every single element K(n)
bb , K(n)

bd (for n = 1,2) there are the matrices of
the compatibility conditions K(n,m)

bb , K(n,m)
bd (for n,m = 1,2).

When the free vibration problem is considered, a generalized eigenvalue problem
have to be solved[

K̄bb K̄bd
K̄db K̄dd

][
Ub
Ud

]
= ω

2
[

0 0
0 M̄dd

][
Ub
Ud

]
(15)

The stiffness matrix remains the same as the static case; the mass matrix is diago-
nally dominant. A mass matrix sample, for a two element mesh, is shown in Fig.
2b). There is not a mass definition on the boundary points, because in the present
study any concentrated mass has been considered in any computation. Only dis-
tributed masses due to material density are imposed.
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Figure 2: Global GDQFEM matrices for a two element mesh: a) Stiffness matrix;
b) Mass matrix.

In general, when a GDQ algebraic system has to be solved, a grid distribution
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Table 1: First ten natural frequencies for a cantilever elastic beam.

f [Hz] FEM† MLPG† NBNM† EFG†
ne = 1 ne = 3
N = 41 N = 21

1 821.059 824.44 844.19 811.63 822.08 822.08
2 4925.76 5070.32 5051.21 4907.9 4931.61 4931.60
3 12823.2 12894.73 12827.6 12852 12823.20 12823.20
4 12975.4 13188.12 13258.2 13075 12989.85 12989.84
5 23581.1 24044.43 23992.8 24113 23605.51 23605.48
6 35964.9 36596.15 36432.2 37463 36000.21 36000.16
7 38440.5 38723.9 38436.4 38616 38441.64 38441.63
8 49516.7 50389.01 49937.2 51999 49564.38 49564.31
9 63831.7 64413.89 63901.2 64566 63894.24 63894.16

10 63965.6 64937.83 64085.9 68585 63970.67 63970.64
† [Amirani, Khalili, and Nemati (2009)]

must be chosen [Tornabene, Liverani, and Caligiana (2011, 2012a,b,c)]. In the
present case, a Chebyshev-Gauss-Lobatto (C-G-L) grid has been considered in all
the computations

ξi =−cos
(

i−1
N−1

π

)
, for i = 1, . . . ,N

η j =−cos
(

j−1
N−1

π

)
, for j = 1, . . . ,M

(16)

It has been demonstrated in literature by [Tornabene (2009); Tornabene, Fantuzzi,
Viola, Cinefra, Carrera, Ferreira, and Zenkour (2014)] that this grid leads to very
accurate results. The number of grid points along the two element sides are indi-
cated by N, M. In order to always have compatibility between all the GDQFEM
elements an equal number of grid points will be considered, therefore N will stand
for N = M.

4 Numerical applications

Homogeneous elastic cantilever beam

As a first numerical benchmark a homogeneous and isotropic elastic cantilever
beam is considered in the following. The mechanical properties of the beam are
E = 205.939 GPa, ν = 0.3, ρ = 7845.32 kg/m3.
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Table 2: First ten frequencies for a fully clamped sandwich cantilever beam.

f [Hz] FEM† EFG†
ne = 3 ne = 3
N = 21 N = 31

1 21.5438 21.93 21.5620 21.5632
2 93.998 97.07 94.2283 94.2307
3 200.354 207.9 201.0721 201.0765
4 307.277 319.12 308.8174 308.8408
5 417.978 432.88 420.8502 420.8787
6 531.631 547.97 536.3943 536.4781
7 651.009 667.01 658.3320 658.4971
8 776.451 790.25 786.1107 787.3466
9 909.587 919.32 928.6953 924.6957
10 1050.72 1054.06 1136.3864 1070.8950

† [Amirani, Khalili, and Nemati (2009)]

The beam length is L = 0.10 m and height equal to D = 0.01 m. The thickness of
the investigated structures, except where otherwise stated, is equal to 0.001 m. In
Tab. 1, the GDQFEM solutions are obtained with a single element mesh ne = 1
with N = 41 and a three-element mesh ne = 3 with N = 21. The numerical results
carried out with the current methodology are compared with the results reported
by [Amirani, Khalili, and Nemati (2009)]. Very good agreement among all the
theories is observed and the interested reader should refer to the paper just above
mentioned to gain the knowledge of the numerical methods (MLPG, NBNM, EFG)
reported in Tab. 1.

4.1 Sandwich cantilever beam

In the second example, a sandwich cantilever beam composed of two sheets and a
soft-core is considered (see Fig. 3). The beam length is L = 1 m and the height
D = 0.02 m. The core thickness is tc = 1.4 · 10−2 m and the two face sheets are
t f = 3 ·10−3 m. Both the two constituent materials are isotropic. The soft-core has
an elastic modulus Ec = 0.2 GPa, a Poisson’s ratio νc = 0.27 and a density ρc = 60
kg/m3, whereas the two sheets have E f = 200 GPa, ν f = 0.3 and ρ f = 7800 kg/m3.
The validation of the present code considers a fully and a partially clamped beam.
The fully clamped beam is depicted in Fig. 3, where the partially clamped has
the top and bottom plies clamped and the soft core free. These two models were
compared with FEM and EFG by [Amirani, Khalili, and Nemati (2009)].

In Tab. 2 and Tab. 3, the first ten frequencies of a fully clamped and partially
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Figure 3: A sandwich beam geometric model.

Table 3: First ten frequencies for a partially clamped sandwich cantilever beam.

f [Hz] FEM‡ EFG†
ne = 3 ne = 3
N = 21 N = 31

1 21.5437 21.92 21.5643 21.5575
2 93.9951 96.81 94.2207 94.2002
3 200.346 207.24 201.0034 200.8917
4 307.264 318.1 308.7793 308.2736
5 417.961 431.49 420.6148 420.6976
6 531.609 546.14 536.3559 536.3396
7 650.981 664.67 658.6543 658.4117
8 776.418 787.28 779.5960 787.0041
9 909.547 915.61 904.8425 925.1526

10 1050.67 1049.9 1131.9594 1070.3390
† [Amirani, Khalili, and Nemati (2009)]
‡ 2D ABAQUS CPS8R plane elements

clamped cantilever beam are reported, respectively. In particular, the GDQFEM re-
sults obtained with a three elements mesh ne = 3 and two sets of grid points N = 21
and N = 31 are compared with a FEM solution and a reference EFG solution. It
should be noted that, when a three-element mesh is used, a single GDQFEM ele-
ment refer to each layer layer. In addition, from Tabs. 2-3 it appears that GDQFEM
solutions are in very good agreement with the two reference solutions. The results
of the partially clamped case are lower than those obtained with the fully clamped
case, due to the effect of less constrained boundary conditions.

To study the effect of core flexibility on the natural frequencies of the sandwich
beam, a parametric analysis is performed. All the numerical results are compared
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Table 4: First ten natural frequencies of sandwich beams with various cores

χ 0.0001 0.001 0.01 0.1

f [Hz] EFG†
ne = 3

EFG†
ne = 3

EFG†
ne = 3

EFG†
ne = 3

N = 31 N = 31 N = 31 N = 31
1 13.744 13.40 21.93 21.56 24.085 23.77 25.08 24.58
2 45.235 44.70 97.07 94.23 141.64 139.30 155.82 152.70
3 85.857 86.77 207.9 201.08 364.23 356.48 430.59 421.75
4 129.63 135.08 319.12 308.84 645.17 628.03 828.52 810.72
5 181.01 194.44 432.88 420.88 960.92 930.75 1339.4 1308.72
6 240.41 265.12 547.97 536.48 1275.5 1249.23 1421 1393.58
7 309.26 348.60 667.01 658.50 1294.9 1269.31 1950 1901.87
8 388.13 444.90 790.25 787.35 1638.1 1575.31 2647.2 2576.28
9 477.52 554.53 919.32 924.70 1985.3 1904.92 3418.3 3318.73
10 577.98 677.41 1054.06 1070.90 2334.6 2236.38 4251.9 4117.36

† [Amirani, Khalili, and Nemati (2009)]

with the ones obtained by [Amirani, Khalili, and Nemati (2009)] and they are re-
ported in Tab. 4. The stiffness factor χ = Ec/E f is defined as the ratio of the elastic
moduli of the core to the two sheets. For χ = 1, a homogeneous elastic system is
derived. When χ decreases the core tends to be softer than the two sheets. On the
contrary when χ increases the opposite behavior occurs. From Tab. 4, it is noted
that when the stiffness factor decreases it leads to lower natural frequencies of the
structure.

4.2 Static analysis of a cantilever sandwich beam

In the following third example, the static analysis of a cantilever sandwich beam
is considered. The investigated example is reported in the book by [Zong and
Zhang (2009)], where the mechanical properties of the core and the two sheets are
Ec = 1.67 GPa, E f = 0.167 GPa, νc = ν f = 0.3. Considering Fig. 3 as a reference,
the geometric characteristics of the beam are length L = 4.8 m and height D = 1.2
m. In particular, the thickness of the core is tc = 0.8 m and t f = 0.2 m, for each
of the two sheets. A static uniform vertical load is applied at the top layer and
indicated by q = 100 Pa. In the following, several through-the-thickness quantities
such as displacements and stresses are compared to FEM and CM solutions. All
of the plots, graphically presented in Figs. 4-7 show three curves: the solid blue
curve indicates the CM solution; the curve made of black crosses denotes the FEM
solution and the line composed of black circles stands for the GDQFEM solution.
Such GDQFEM solution is obtained with three elements only ne = 3 and N = 21
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(a)

(b)

Figure 4: Displacements at the middle section x = 2.4 m: a) horizontal displace-
ment u; b) vertical displacement v.

grid points. Three different sections are studied in this example. They are located
at x = 1.2 m, x = 2.4 m and x = 3.6 m.

In Fig. 4, the horizontal and vertical displacements are shown at x = 2.4 m. It can
be noticed that the GDQFEM and FEM solutions are superimposed and there is a
slight difference with the CM numerical solution. As far as the stress components
are concerned, Figs. 5-7 show the stress recovery solution for the problem under
consideration. In particular, the normal stress σx is computed at three distinct sec-
tions for the three numerical methods illustrated above. It is noted that, in Figs.
5a),b) the stress profiles have the same shape, whereas the tendency of the curves
on the two sheets changes in Fig. 5c). In fact, in Fig. 5c) the maximum normal
stress σx is calculated at the two material interfaces, whereas in Figs. 5a),b) the



314 Copyright © 2013 Tech Science Press CMES, vol.94, no.4, pp.301-329, 2013

(a)

(b)

(c)

Figure 5: Normal stress σx evaluated at: a) x = 1.2 m, b) x = 2.4 m and c) x = 3.6
m.
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(a)

(b)

(c)

Figure 6: Normal stress σy evaluated at: a) x = 1.2 m, b) x = 2.4 m and c) x = 3.6
m.
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(a)

(b)

(c)

Figure 7: Shear stress τxy evaluated at: a) x = 1.2 m, b) x = 2.4 m and c) x = 3.6 m.
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maximum stress is at the top and bottom of the sandwich. All the three numerical
results are superimposed in all the representations.

Regarding the transversal stress σy at the three beam sections at issue, the corre-
sponding through-the-thickness profiles are depicted in Figs. 6a)-c). In particular,
each σy curve is continuous through the beam thickness. The CM, GDQFEM, FEM
numerical solutions are generally in good agreement. The CM solution shows an
oscillating character at x = 1.2 m. On the other hand, the FEM solution shows more
values at each interface. This happens because the FEM solver has to deal with ma-
terial properties which are different between two adjacent elements. It should be
noted that the σy stress profiles satisfy the boundary conditions at the top and bot-
tom sections of the investigated cantilever sandwich beam. The last comparison
involving the shear stress τxy is represented in Figs. 7a)-c). Very good agreement is
observed in these cases too where the shear stress τxy has the classic parabolic trend
through-the-thickness of the sandwich beam. The maximum shear stress decreases
starting from x = 1.2 m to x = 3.6 m.

4.3 Sandwich circular arch

The final example of this paper examines a circular composite arch. The purpose
is to investigate the GDQFEM accuracy for soft-core structures in the presence of
curvature. It is worth noticing that, in the previous examples, all the GDQFEM
elements were rectangles because the laminae had a rectangular shape. In this case,
all the elements must have at least two curved boundaries. So, mapping technique
must be used in this case, whereas in the previous examples multi-domain differen-
tial quadrature could be directly applied. Both the static and the dynamic analyses
of this structure will be discussed. The geometric configuration of the sandwich cir-
cular arch is outlined in Fig. 8a), where the two diameters are D1 = 6 m, D2 = 8 m.
As far as the mechanical properties are concerned, the top and bottom sheets have
E f = 30 MPa, ν f = 0.3 and density ρ f = 2000 kg/m3 with a thickness t f = 0.25
m. The material of the core is characterized by the value of the elastic modulus
Ec = 30 kPa, νc = 0.25 and density ρc = 100 kg/m3. The thickness of the core
structure is tc = 0.5 m. From Fig. 8a) it appears that the top and bottom layers of
the given composite structure are indicated by Ω f , whereas the core is specified by
Ωc.

In Tab. 5 the first natural frequencies of the sandwich arch are shown for different
numbers of grid points. The GDQFEM solutions are compared with the FEM re-
sults. Very good agreement is observed. It is also noted that in the some cases a
different set of points is used N 6= M. In order to have the element compatibility it
is sufficient that two adjacent edges have the same number of grid points. For the
sake of completeness, the first four mode shapes are graphically depicted in Fig.
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(a)

(b)

Figure 8: Sandwich circular arch: a) geometric scheme, b) GDQFEM mesh.

9. The soft-core behaviour is very clear from Fig. 9d), because the inner core is
squeezed by the stiffer top and bottom layers.

In the second part of this numerical example, the static behavior of the same sand-
wich arch is studied. The structure is subjected to a uniform pressure q = 100 Pa at
the external circle radius. The displacement, strain and stress profiles are calculated
at three different sections, as indicated in Fig. 8b). The first section 1-1 is the mid-
section of the arch. The other two sections are far (section 2-2) and near (section
3-3) the right and left clamped edges, respectively. For the case under study, several
stiffness ratios χ = E f /Ec are considered. In all the plots of Figs. 10-12 five curves
are represented for different values of χ , from χ = 10 (blue curve) to χ = 105 (yel-
low curve). In the plots in hand, the coloured circles are obtained with GDQFEM
and the coloured crosses are made by FEM. It is clear that the higher soft-core ef-
fect is carried out by the last curve for χ = 105. In particular, the Poisson effect of
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Table 5: First ten frequencies for a circular composite arch for several grid points.

f [Hz] FEM‡
N = 9 N = 11 N = 15 N = 9 N = 11 N = 13
M = 9 M = 11 M = 15 M = 21 M = 21 M = 17

1 0.5524 0.5531 0.5535 0.5531 0.5537 0.5531 0.5529
2 1.1561 1.1588 1.1584 1.1573 1.1580 1.1571 1.1570
3 1.9997 2.0027 2.0023 2.0008 2.0015 2.0004 2.0004
4 2.2463 2.2512 2.2497 2.2483 2.2479 2.2477 2.2479
5 2.6446 2.6459 2.6461 2.6456 2.6458 2.6454 2.6454
6 2.8359 2.8354 2.8354 2.8347 2.8356 2.8346 2.8345
7 3.2546 3.2557 3.2561 3.2554 3.2564 3.2554 3.2551
8 3.8607 3.8602 3.8605 3.8602 3.8612 3.8602 3.8600
9 4.1803 4.1815 4.1805 4.1789 4.1796 4.1786 4.1785

10 4.5884 4.5872 4.5868 4.5869 4.5870 4.5871 4.5870
‡ 2D ABAQUS CPS8R plane elements

(a) (b)

(c) (d)

Figure 9: First four mode shapes of a composite circular arch: a) 1st mode, b) 2nd
mode, c) 3rd mode, d) 4th mode.
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(a) (b)

(c) (d)

(e)

Figure 10: Section 1-1 profiles: a) displacement component v, b) strain component
εx, c) strain component εy, d) stress component σx, e) stress component σy.

the core can be seen on the vertical strain component εy and stress component σy.
In the first case the deformation of the core is higher than the transversal deforma-
tion of the sheets. In the second case, instead, it appears that the normal pressure is
concentrated on the top sheets and the energy is fully absorbed by the deformation
of the inner soft-core. In Figs. 10a)-e), the profiles of the half section of the arch are
represented. In particular, Fig. 10a) shows the vertical displacement, Figs. 10b),c)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 11: Section 2-2 profiles: a) displacement component u, b) displacement
component v, c) strain component εx, d) strain component εy, e) strain component
γxy, f) stress component σx, g) stress component σy, h) stress component τxy.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 12: Section 3-3 profiles: a) displacement component u, b) displacement
component v, c) strain component εx, d) strain component εy, e) strain component
γxy, f) stress component σx, g) stress component σy, h) stress component τxy.
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show the horizontal and vertical strains components and Figs. 10d),e) show the
horizontal and vertical stresses components σx and σy. Since the arch is symmetric
with a symmetric loading, the horizontal displacement u, the shear strain γxy and
the shear stress τxy are negligible, so they were not depicted. Figs. 11a)-h) show the
displacements components u, v, the strain εx, εy and γxy and stress tensor σx, σy and
τxy in each point of the section 2-2 of Fig. 11b). It is noted that the displacements
u and v have a linear trend when χ = 10, whereas the zig-zag effect appears when
χ ≥ 100. From Figs. 11c)-e) the Poisson effect is clearly concentrated in the core
layer only. Finally, from the stress plots described by Figs. 11f)-h), it can be seen
that the higher stresses are concentrated on the top layer only due to the soft-core
effect of the layer underneath. Finally, in the last section 3-3 the same quantities
of section 2-2 are depicted in Figs. 12a)-h). In this last case the soft-core effect is
similar to the one of the plots of section 2-2, but the quantities have a non-linear
trend through-the-thickness due to the proximity of the external clamped boundary
condition. In this case also the GDQFEM numerical solutions are in very good
agreement with the reference solution obtained by FEM.

5 Conclusions

In this paper, GDQFEM applications to plane state composite laminated structures
have been presented. In particular, both the static and dynamic cases of sandwich
beams and arches have been developed comparing the results with FEM and CM.
Furthermore, some cases taken from literature have been compared too. It has
been observed a very good agreement among all the different numerical method-
ologies. One the key advantages observed in the computations is the high-accuracy
of GDQFEM with respect to commercial codes. In fact, few GDQFEM elements
were considered, moreover the degrees of freedom of a GDQFEM model were less
than the ones employed in the other techniques. It can be concluded that GDQFEM
is a powerful tool for solving laminated composite structures even when the ratios
χ between the core and the face sheets are very high. In short, very good accuracy
is reached and all the results fits the others obtained with FEM and CM.
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