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Abstract The present study is part of an identifying programme for constitutive
parameters in damaged materials, termed the “effective parameters”. The pro-
gramme starting point is that the experimental response depends not only on con-
stitutive parameters, but also on structural mechanics and interaction with the
test-machine. It is showed how the load-displacement diagram of compressed con-
crete cylinders is affected by crack propagation, through the resistant structure
modification. Moreover, it is analytically demonstrated that the effective stress
(σeff )-effective strain (²eff ) curve exhibits a strictly positive derivative at the point
corresponding to the average stress (σ)-average strain (ε) curve peak. Finally, it
is proposed a new identification procedure which provided satisfactory results, giv-
ing monotone strictly non-decreasing, size-effect insensitive and failure mechanism
insensitive σeff − εeff curves.

1 Introduction

In order to derive a constitutive law in uniaxial compression from experimental data, it is
common practice to define the average stress σ and the average strain ε as shown in Figure
1. The σ− ε relationship in Figure 1 is known as uniaxial constitutive law for monotone
strain processes. The term “constitutive” is associated with the σ − ε relationship since
this relationship is considered as representative of the mechanic behaviour of the material.
However, one can make the following remarks concerning the choice of this term:-

1. The σ − ε law in Figure 1 is size−effect sensitive, while a constitutive law should
not exhibit a size effect.

2. The identification procedure in Figure 1 consists of a mere change of scale. Thus,
experimental and identified curves are homothetic (Figure 1). In particular, they
both exhibit a softening behaviour. Nevertheless, it is not possible to associate
a physical meaning with the softening behaviour of a material response, as the
concept of instability loses its sense in the infinitesimal neighbourhood of a point
(Ferretti, 2001). Strain−softening has been widely regarded as inadmissible by
several authors (Bazant et al., 1997), from the beginning of the 20th century forth.
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Figure 1. Traditional identification of mono-axial constitutive law by experimental tests.

These inconsistencies come from the impossibility of performing mechanical tests on
the material directly: the object in testing is never the material, but a structure interact-
ing with the test−machine (Figure 1, (Ferretti et al., 1999)). Thus, experimental results
univocally characterise the behaviour of the specimen−test machine system, while they
are not at all representative of the behaviour of the material. In particular, the softening
branch has a meaning that is only linked to the structural instability. This branch cannot
provide information on the constitutive behaviour, but through an identifying model. To
this aim, the evaluation of all factors influencing a test result is needed. Indeed, since
the specimen is a structure, experimental results (R) depend not only on constitutive
properties (C), but also on structural mechanics (S), interactions between test−machine
and specimen (I), and test−machine metrological characteristics (M):

R = C + S + I +M. (1.1)

It is then necessary to define an identifying procedure from experimental data to
material behaviour (inverse problem), which is not affected by the remarks concerning
the approach in Figure 1. On the base of partially analogous considerations, Rosati and
Natali Sora (2001) have recently proposed a complete response for tensioned concrete.

2 Identification Approach of the Mono-Axial Effective Behaviour

2.1 Identification of the Effective Stress

Name KC , KS , KI , and KM the weighed contributions assumed by C, S, I, and M ,
respectively, in the definition of R (Eq. 1.1):

C = KCR, S = KSR, I = KIR, M = KMR. (2.1)

From Eqs. 1.1 and 2.1, it follows that KC+KS+KI+KM = 1. All the contributions
but the constitutive behaviour can be grouped in one factor K:

K = KS +KI +KM . (2.2)
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From the identifying procedure in Figure 1 it follows that:

C ≡ R. (2.3)

With the positions in Eqs. 1.1, 2.1 and 2.2, the Eq. 2.3 is replaced by the relationship:

C = (1−K)R. (2.4)

Eq. 2.4 allows evaluation of the constitutive properties, taking into account the behaviour
of the specimen−test machine system. This approach is formally more correct than the
approach in Eq. 2.3. Nevertheless, it is not of immediate use, since KC = KC (R),
KS = KS (R), KI = KI (R), and KM = KM (R) are load−step functions. Then,

K = K (R) (2.5)

is a load−step function, and not a constant of the performing test. In conclusion,
it is not possible to establish a homothetic correspondence between the experimental
load−displacement and the uniaxial stress−strain relationship. Moreover, since Eq. 2.5
is not of objective determination, K can only be estimated, with regard to the material
scale. This involves the identification of an effective and not constitutive response.
The loss of homothetic behaviour allows us to obviate to the second remark in

§1. In other words, since it is impossible to associate a physical meaning with the
strain−softening behaviour, we can aspect that the effective laws must be monotone
nondecreasing for any material. An analysis of the reciprocal ratios between KC , KS ,
KI and KM for compressed concrete cylinders (Ferretti, 2001) showed that K ∼= KS :
any specimen can be regarded as composed by a resistant structure (Figure 2), in which
crack propagation never occurred, and a volume of incoherent material. To identify the
scale factor of the σ axis with respect to the N axis (Figure 1), it is then fundamental
to introduce a parameter whose dimensions are those of an area and whose incremental
law is linked to the structural scheme variation. In the following, this parameter will
be termed the resistant area Ares. It was here1 proposed to estimate the resistant area
Ares in accordance with the Fracture Mechanics with Damage, by means of the damage
parameter D (here D has a scalar value):

Ares = An (1−D) . (2.6)

The effective stress has here been defined as the average stress acting on Ares:

σeff =
N

Ares
= σ

An
Ares

. (2.7)

The analogy with the manner of operation of the Fracture Mechanics with Damage is
limited to Eq. 2.6. In the Fracture Mechanics with Damage, D is analytically formulated
and considered as uniformly distributed on An. In this study, D = D (R) is experiment-
ally evaluated and considered as localised in the volume of incoherent material.
1We thank the Italian Ministry for Universities and Scientific and Technological Research
(MURST) for its financial support.
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Figure 2. Resistant structure at the end of the test.

Algebraic considerations about the formulation of the effective stress. In Eq.
2.7, make explicit the dependence of σeff , Ares, N and D on the displacement v:

σeff (v) =
N (v)

Ares (v)
. (2.8)

Now, find the derivative of Eq. 2.8 with respect to the variable ε:

dσeff
dε

= σ0eff
dv

dε
= H

N 0Ares −NA0res
A2res

. (2.9)

The superscript indicates derivation with respect to the variable v, and H is the gage
length of ε. For the conventions in Figure 1, it follows that:

N (v)|v=v̂ = Nmax, (2.10)

where v̂ is the value of impressed displacement corresponding to the maximal load. As
to the discussion of the sign of Eq. 2.9, it can be stated that:

• N is a monotone nondecreasing function until the peak ( N 0 ≥ 0, 0 ≤ v ≤ v̂), and
a monotone strictly nonincreasing function beyond the peak (N 0 < 0 , v > v̂);

• Ares is a monotone nonincreasing function on all the domain ( A0res ≤ 0, ∀v), and
it can assume a zero tangent only in a neighbourhood of the origin, corresponding
to the linear elastic state of the material.

For Eq. 2.6, the assumption of monotonicity for Ares involves the monotonicity of
the damage law. The experimental results agree with the condition of non zero tangent
of Ares and D for v = v̂, since the crack propagation rate near v = v̂ is always very fast:

A0res|v=v̂ 6= 0, D0|v=v̂ 6= 0. (2.11)

It follows immediately that the sign of dσeff/dε is positive for 0 ≤ v ≤ v̂:
dσeff
dε

> 0 0 ≤ v ≤ v̂. (2.12)
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In particular, for v = v̂ the Eq. 2.9 assumes the value of:

dσeff
dε v=v̂

= −NHA
0
res

A2res
> 0, (2.13)

in which the strict inequality comes from Eq. 2.11. From Eq. 2.13, the first fundamental
result follows: a point with strictly positive tangent in the σeff − ε curve corresponds to
the point with zero tangent in the N −v curve. This is a notable result, since it has been
obtained without having introduced any other assumptions on the shape of the damage
law except the condition of non zero tangent in correspondence of the maximal load. The
same result for the sign of the tangent can be transposed to the σeff −εeff curve, in the
point corresponding to the v = v̂ point of the N − v curve. The sign of Eq. 2.9 for v > v̂
depends on the value of ρ, the ratio between the two terms in the numerator of Eq. 2.9:

ρ =
N 0Ares
NA0res

; (2.14)

dσeff
dε

≥ 0 ∀v > v̂, 0 ≤ ρ ≤ 1; (2.15)

dσeff
dε

< 0 ∀v > v̂, ρ > 1. (2.16)

In alternative, one can study the sign of the derivative of q, defined as follows:

q =
σmax
σeff

(2.6)
=

Ares
An

N

Nmax
; (2.17)

q0 = −σmax
σ0eff
σ2eff

= −σmaxN
0Ares −NA0res

N2
. (2.18)

From Eq. 2.18 it can be observed that the sign of q0 too is determined by the ratio ρ:

q0 > 0 ∀v > v̂, ρ > 1; (2.19)

q0 ≤ 0 ∀v > v̂, 0 ≤ ρ ≤ 1. (2.20)

On the other hand, the signs of q0 and σ0eff are unconformable ∀v for Eqs. 2.15, 2.16
and 2.18. In conclusion, the sign of dσeff/dε is surely positive for 0 ≤ v ≤ v̂, whereas it
is only known when the damage law is known for v > v̂. Also this result can easily be
transposed to the sign of the derivative of the σeff − εeff curve.

2.2 Identification of the Effective Strain

As regards the scale factor of the ε axis with respect to the v axis (Figure 1), the effective
strain εeff has been identified considering that only the conservative forces act in a gen-
eric unloading−reloading cycle. In other words, these cycles should be characterised by
constant values of resistant area. For this assumption, the instantaneous secant stiffness
of the σeff − εeff law, Es = tanα (Figure 3), is taken equal to the average slope of
the unloading−reloading cycle at the current point. Thus, the generic point σeff − εeff
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Figure 3. Identification of εeff starting from the known value of σeff .

results from the intersection of the two lines σ = σeff and σ = Esε. Figure 3 shows the
identification of the effective strain εeff , starting from the value of effective stress σeff
(Eqs. 2.7 and 2.6) and the knowledge of the damage law D.

3 Sensitivity to the Specimen Slenderness

To operate the transformation in Figure 3 from the σ − ε diagram to the σeff − εeff
diagram, the damage law D and the unloading law must be known. In the following, a
proposal to experimentally evaluate these laws is presented.
The results on six geometries of cylindrical concrete specimens, with the height−radius

ratio variable between three and eight (Ferretti, 2001), will be here presented. Three
specimens have been made for each of the six geometries. All the eighteen specimens
have been tested in monotone uniaxial load, in the same thermo−hygrometric and curing
conditions.

3.1 Unloading Law

The Figure 4 shows how the unloading law is sensibly independent on the slenderness
of the specimens. This result supports the assumption for which all the parameters
characterising the unloading−reloading cycles, included their average slope, are linked to
proprieties of the material and do not depend on the structural mechanics. This happens
since the resistant area does not change in the unloading−reloading cycles.

3.2 Experimental Damage Law

To evaluate D = D (R), two experimental damage laws were employed. The first damage
law, D1 (Daponte and Olivito, 1989), relates the damage to the percentage variation of
the microseismic signal velocity V at the current point (set−up of the microseismic test
in Figure 5.a):

D1 = 1− V /V0, (3.1)
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Figure 4. Interpolating law of the unloading-reloading cycles average slope variation for
variable slenderness.

where V0 is the initial microseismic signal velocity. The second damage law, D2 (Ferretti
et al., 1999), relates the damage to the dissipated energyWd at the current point (Figure
5.b):

D2 = Wd/Wd,t, (3.2)

where Wd,t is the total dissipated energy. D1 and D2 turned out to be very close to each
other (Ferretti, 2001), until the acceptability threshold of the added noise. This threshold
corresponds to the value of deformation beyond which the noise of the crack propagation
disturbs the microseismic survey so much that the variations of the microseismic signal
cannot be appreciated any longer. For Eq. 2.6, the D1 and D2 damage values can be
seen in Figure 6 as the one’s complement of the percentage resistant area. Only the D2
damage law has been used in the following, since it has no limitations in the survey field.
The assumption of only conservative forces acting on the unloading−reloading cycles

allows evaluation of the specimen defects at the natural state, through the initial damage
D0 (Ferretti and Carli, 1999). In this assumption, indeed, D0 comes from the ratio

N 

N 
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Figure 5. a) Test set-up for the acquisition of D1; b) Evaluation of Wd.
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between the slope of the stabilising cycle and the tangent to the origin of the N − v
diagram (Figure 7):

D0 = 1− E0 (ε)

E0eff1 (ε)
∼= 1− tanφ

0
c

tanφ0s
. (3.3)

It must be incidentally recalled that a stabilising cycle is an unloading−reloading cycle
that is effectuated for a preloading equal to about the 10% of the maximal presumed load.
The stabilising cycle is done in order to limit the influence of the specimen−test machine
interaction and test−machine metrological properties on the result. The moderate value
of the preloading and the mechanical meaning of the unloading−reloading slopes allow
one to associate the difference between the loading and unloading slopes with a damage
that is load history independent, characterising the specimen at the natural state.
In accordance with Eq. 3.3, Eq. 2.6 has been modified as follows:

Ares = An (1−Deq) . (3.4)
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Figure 8. Evolution of resistant area and D2 damage law for variable slenderness.

Deq is the equivalent damage, comprehensive both of the initial damage D0 and the
damage D2 due to the monotone loading. Deq can be expressed as:

Deq = 1− (1−D0) (1−D2) = D0 +D2 −D0D2. (3.5)

The nominal area deprived of the defects at the natural state, termed the reduced
nominal area A0n, results from:

A0n = An (1−D0) . (3.6)

Damage laws were experimentally derived for variable specimen slenderness. The
Figure 8 shows the D2 damage laws obtained for H/R ratios varying from 3 and 8. As
can be seen in Figure 8, damage laws are size−effect sensitive. That is, the highest is
the H/R ratio, the highest is D for every load−step.

3.3 Sign of the Effective Stress Derivative

As previously stated, the damage can be seen in Figure 9 as the one’s complement of the
percentage resistant area. The derivative of the experimental damage law in Figure 9,
D0, turned out to be very close to assume a maximum for v = v̂. This result validates
the assumption in Eq. 2.11, and corresponds to a fast crack propagation situation.
As regards the sign of the effective stress derivative after the peak, the experimental

q (v) function turned out to be a positive−valued, monotone strictly nonincreasing func-
tion (Figure 10). The discussion on D0 is independent on the single test, and the beha-
viour in Figure 9 for v = v̂ can be generalised. Indeed, the adopted damage law (Eq. 3.2)
has a shape that is widely determined by the integral of the N − v curve. Hence, since
the N − v curve exhibits a maximum for v = v̂, the damage law assumes its maximum
derivative in the neighbourhood of v̂:

q0 (v) < 0 ∀v. (3.7)
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This implies that the resistant area decreasing rate was faster than the load decreasing
rate. This circumstance and the negative sign between q0 and σ0eff (Eq. 2.18) ensure the
effective stress derivative to be positive also for v > v̂.
In conclusion, for the performed experimental programme and the damage law in Eq.

3.2, the effective stress derivative always assumes a finite positive value:

dσeff
dε

> 0 ∀v. (3.8)
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3.4 Effective Curve

Figure 11. Size effect for the load-displacement diagrams.

Figure 12. σeff/ εeff dispersion range for variable slenderness and average curve.

The N − v diagrams for the six specimens with varying slenderness (Ferretti, 2001) are
shown in Figure 11. In this Figure, the size−effect in the N − v plane involves both
a decrement of the tangent to the origin with the increasing of the H/R ratio, and a
decrement of the maximum load with the increasing of the H/R ratio.
The σeff−εeff relationships obtained for the six tested geometries fall within the grey

region in Figure 12 (dispersion range). As previously stated, a strictly positive derivative
for the effective properties curves in the σeff − εeff plane directly follows from the
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independence of the behaviour in Figure 9 on the single test. Moreover, it can be stated
that the effective properties curves are size−effect insensitive, since the dispersion range
is very little. The average curve shape in the σeff − εeff plane is representative of the
meso−scale material behaviour.

4 Sensitivity to the Failure Mechanism

The results of a second experimental programme are presented, as to provide a further
validation to the proposed identification procedure. Also this experimental programme
was performed in the intent to derive a qualitative and not quantitative information.
For this reason, the number of the specimens was limited to two. This second time, the
geometry of the two specimens is the same, but they are forced to fail in different ways.
As well known, a concrete cylinder in uniaxial compression fails with a dominant

bi−cone shaped crack which enucleates in correspondence of the press plates and propag-
ates towards the middle cross−section (Figure 13). To modify the failure mechanism,
one of the two specimens was cut along its middle cross−section. Before restoring the
specimen, three grommets were fixed on the middle cross−section (Figure 13). The res-
toration of the specimen has been carried out with mortar. Since the stiffness of the
grommets is much higher than the stiffness of the concrete, once loaded the specimen
the three grommets have the function to concentrate the load in correspondence of their
fixing points. This results in a failure mechanism with the dominant crack enucleating
on the middle cross−section, starting from the fixing points of the grommets (Figure 13).
The final failure surfaces were the same in the two cylinders (Figure 13).
In Figure 14 the load−displacement experimental curves for the uncut and the cut

cylinder are shown. Theese curves are almost superimposed as long as the dominant
crack does not start to propagate. That is, the initial stiffness of the restored specimen
is almost the same as the initial stiffness of the uncut specimen, stating that the cut and
the subsequent restoring have not significantly modified the cylinder stiffness properties.
When the dominant crack starts to propagate, the two curves bifurcate, assuming a

different shape (Figure 14). The presence of a bifurcation point confirms that the failure
mechanisms of the two specimens were actually different, as it was in the Authors aims.
In Figure 15, the percentage difference from the mean value of load is quoted for

intervals of displacement of 0.08 mm. The two local maximums are quoted on the plot.

Figure 13. Crack path for the uncut (a) and the cut (b) cylinder.

12



0

200

400

600

800

1000

1200

0 0.5 1 1.5 2 2.5 3
Displacement   [mm]

L
oa

d 
  [

kN
]

Cut cylinder
Uncut cylinder

Figure 14. Load-displacement curves for the cut and the uncut cylinder.

16.83%

8.00%

0

200

400

600

800

1000

1200

0.
00

%
5.

71
%

2.
14

%
0.

19
%

0.
99

%
1.

12
%

3.
69

%
6.

78
%

7.
21

%
8.

00
%

5.
87

%
1.

57
%

3.
94

%
5.

76
%

6.
11

%
4.

93
%

5.
86

%
6.

77
%

7.
68

%
8.

57
%

9.
45

%
10

.3
2%

11
.1

7%
12

.0
0%

12
.8

1%
13

.5
9%

14
.3

6%
15

.0
9%

15
.7

8%
16

.4
5%

16
.0

7%
14

.8
1%

13
.6

1%
12

.0
5%

11
.3

8%
11

.7
5%

10
.3

1%

L
oa

d 
 [k

N
]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

Displacement  [mm]
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ment of 0.08 mm.

The maximum percentage difference from the mean value is reached in advanced phase
of softening (Figure 15) and is equal to about 17%. The maximum percentage difference
in the neighborhood of the peak is equal to about 8% (Figure 15).
Evaluation of the damage lawsD1 andD2 has been carried out in accordance with Eqs.

3.1 and 3.2, giving very close results until the acceptability threshold of the added noise
this second time too. The initial damage D0 and the equivalent damage Deq have been
identified, respectively, in accordance to Eqs. 3.3 and 3.5, with the reduced nominal area
A0n given by Eq. 3.6. The experimental q(v) function turned out to be a positive−valued,
monotone strictly nonincreasing function and the resistant area decreasing rate was faster
than the load decreasing rate, as it was in the first experimental programme.
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In Figure 16 the σeff − εeff relationships obtained for the two tested cylinders are
shown.
In Figure 17, the percentage difference from the mean value of effective stress is quoted

for intervals of effective strain of 400 µε. The three local maximums are quoted on the
plot. The point of the σeff − εeff plane corresponding to the first local maximum in
Figure 15 (the point near the peak) is indicated with a square marker. Its percentage
difference is quoted on the plot.
As it can be appreciated in Figure 17, the percentage difference from the mean value

computed in the σeff−εeff plane is noticeably lower than the percentage difference from
the mean value computed in the N − v plane.
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5 Conclusions

Considering the specimen as a structure interacting with the test−machine, it was demon-
strated that the σeff−εeff curve of damaging materials exhibits a strictly positive deriv-
ative at the point corresponding to the peak of the σ−ε curve. This result is independent
on the adopted damage law.
A procedure to experimentally evaluate the damage law on cylindrical concrete spe-

cimens in uniaxial compression has been proposed (first experimental programme). The
adopted damage law led to monotone strictly nondecreasing σeff − εeff curves for all
concrete specimens. Moreover, this curve turns out to be size−effect insensitive.
The two identified σeff − εeff curves of the second experimental programme do not

exhibit bifurcation points. This means that the identified curve is not sensitive to the
change of failure mechanism too. The low value of percentage difference from the mean
value in correspondence of the square marker in Figure 17 confirms this conclusion, since
for this point the effect of the different failure mechanism reaches a maximum (Figure 15).
This result is very important to give validity to the proposed identification procedure,
since the independence from the failure mechanism is one of the most important requisites
for an identifying procedure of material parameters. Moreover, this result is as much
important as the traditional identifying procedure for constitutive laws in uniaxial loading
is not insensitive to the change of failure mechanism.
The proposed approach allows identification of a σeff − εeff relationship for the

description of the meso−scale material behaviour. This relationship, together with ad-
equate failure criteria, leads to structural analysis.
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