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Abstract A numerical code for modeling crack propagation using the Cell Method
is proposed. The Leon failure surface is used to compute the direction of crack
propagation, and the new crack geometry is realized by an intra-element propagation
technique. Automatic remeshing is then activated. Applications in Mode I, Mode II
and Mixed Mode are presented to illustrate the robustness of the implementation.

1 Comparison between Discrete and Variational Approach

The use of a discrete formulation instead of a variational one is advantageous, since
several problems of the variational formulation are avoided by means of the discrete
formulation. With the variational formulation:-

Field variables f = f (x, y, z, t) are needed, which are point and instant dependent.
If not directly in possession of point functions, the variational approach obtains
them from the global quantities by means of the density notion and limit process.
A subsequent phase of equation discretisation and integration is needed to reach
the solution.
The solution is not obtained for the mesh nodes directly, but extrapolated to them.
It is not possible to attain convergence greater than the second order.
Heterogeneities represent an obstacle.
Singularities of the domain contour represent an obstacle.
Punctual forces represent an obstacle.
The definition of a model for treating the zone ahead of the crack edge is needed.

On the contrary, with the discrete formulation:-

Only global variables g = g (x, y, z, L,A, V, t) are needed, which are point and in-
stant, but also line, area and volume dependent. In a word, global functions are
domain and not point functions. Balance equations are expressed using global vari-
ables, so they do not contain derivatives and do not therefore require integration.
The solution is obtained for the mesh nodes directly.
The convergence order is equal to the FEM one, at worst. One can reache conver-
gences of the fourth order.
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The constitutive matrix can vary from one cell to another, with heterogeneities
which can be of the same order than the mesh sides dimension.
Singularities of the domain contour are no longer an obstacle.
Punctual forces are no longer an obstacle.
The definition of a model for treating the zone ahead of the crack edge is no longer
needed.

2 Crack Extension Criterion

For finding a crack trajectory, the variational principle of the most common crack theories
has been used over the past three decades (Parton and Morozov, 1978). Criteria for
the initiation of crack propagation can be obtained on the basis of both energy and
force considerations. Historically, at first an energy fracture criterion was proposed by
Griffith (1920), then Irwin (1957) formulated a force criterion, while the same time
demonstrating the equivalence of the two criteria. The Irwin force criterion for crack
extension and the equivalent Griffith energy criterion completely solve the question of
the limiting equilibrium state of a cracked continuous elastic body. Nevertheless, there
exists a number of other formulations also establishing the limiting equilibrium state of
a cracked body. Among these, the best known models are those of Lenov and Panasyuk
(1959), Dugdale (1960), Wells (1961), Novozhilov (1969), and McClintock (1958).
Usually, the variational problem of finding the limiting load and the crack propagation

direction is reduced to that of finding extreme points of a function of several variables
(Parton and Morozov, 1978). In the present paper, the variational approach has been
abandoned in favour of a discrete formulation of the crack propagation problem. The
discrete formulation used in the following is the Cell Method, said the CM (Tonti, 2001).
When studying crack problems for an elastic-perfectly plastic body with the energy

equilibrium criterion, the solution is usually given in the case when the plastic deforma-
tion is concentrated in a narrow zone ahead of the crack edge. The thickness of this zone
is of the order of elastic displacements. Moreover, when the plastic zone ahead of the
edge is thin, the problem is reduced to the solution of an elastic problem instead of an
elastic-plastic one. This reduction is based on the fact that, in the linearized formulation,
a thin plastic zone may be schematically replaced by an additional cut along the face of
which are applied forces replacing the action of the plastically deforming material. At-
tention is then drawn to the fact that the region of plastic non-linear effects in the model
under consideration varies with the external load and represents a plastically deforming
material in which the state of stress and strain must be determined from the solution of
an elastic-plastic problem. With the discrete formulation, on the contrary, no hypothesis
on the shape and dimensions of the plastic zone is needed, and the calculation is per-
formed directly, without having to reduce the problem to an equivalent elastic one. The
code for crack trajectory analysis with the CM has been developed by Ferretti (2003)1.
The crack extension direction and the minimum load required to propagate a crack

(limiting load) can be determined by using a variety of criteria:-
1The Italian Ministry for Universities and Scientific and Technological Research (MURST) is
gratefully acknowledged for its financial support.
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Figure 1. Leon limit surface in the Mohr-Coulomb plane.

maximal normal stress criterion;
maximal strain criterion;
minimum strain energy density fracture criterion;
maximal strain energy release rate criterion;
damage law criteria.

In the present paper, the crack extension condition is studied in the Mohr-Coulomb
plane. The limiting load is computed as the load satisfying the condition of tangency
between the Mohr’s circle and the Leon limit surface (Figure 1).
Said c the cohesion, fc the compressive strength, ftb the tensile strength, τn and σn,

respectively, the shear and normal stress on the attitude of external normal n, the Leon
criterion in the Mohr-Coulomb plane is expressed as:

τ2n =
c

fc

ftb
fc
+ σn . (2.1)

The Mohr’s circle for the tip neighbourhood is identified by means of the physical
significance associated with the CM domain discretization. The CM divides the domain
by means of two cell complexes, in such a way that every cell of the first cell complex,
which is a simplicial complex, contains one, and one only, node of the other cell complex.
In this study, a Delaunay/Voronoi mesh generator is used to generate the two meshes
in two-dimensional domains. The primal mesh (the Delaunay mesh) is obtained by
subdividing the domain into triangles, so that for each triangle of the triangulation the
circumcircle of that triangle is empty of all other sites (Figure 2). The dual mesh (the
Voronoi mesh) is formed by the polygons whose vertexes are at the circumcenters of the
primal mesh (Figure 2). For each Voronoi site, every point in the region around that
site is closer to that site than to any of the other Voronoi sites. The conservation law is
enforced on the dual polygon of every primal vertex. To identify the Mohr’s circle for
the tip neighbourhood, an hexagonal element was inserted at the tip (Ferretti (2003),
Figure 2). When the mesh generator is activated, the hexagonal element is divided into
equilateral Delaunay triangles and a quasi-regular tip Voronoi cell is generated (the cell
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Figure 2. Hexagonal element for analysis in the Mohr-Coulomb plane.

Figure 3. Crack propagation technique.

filled in gray in Figure 2). This allow us to establish a correspondence between the tip
stress field and the attitudes corresponding to the sites of the tip Voronoi cell. It has
been shown (Ferretti, 2003) that the tension points correctly describe the Mohr’s circle
in the Mohr-Coulomb plane, for every rotation of the hexagonal element around the tip.
The propagation direction is then derived as the direction of the line joining the

tangent point to the Mohr’s pole (Figure 1). The crack propagation technique is the
nodal relaxation intra-element, with subsequent re-meshing (Figure 3).

3 Constitutive Assumption

The concrete constitutive law here adopted is monotonically non-decreasing, in accord-
ance with the identification procedure for concrete in mono-axial load provided by Ferretti
(2001) (Figure 4). It was shown (Ferretti, 2001) how this constitutive law turns out to
be size effect insensitive and failure mechanism insensitive for mono-axial compressive
load. This result has made it possible to formulate a new concrete law in mono-axial
loading, the effective law, which can be considered more representative of the material
physical properties than the softening laws are. The tensile branch was here identified
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Figure 4. Adopted constitutive law for concrete in mono-axial load.

starting from the compressive one, in the assumption that an homothetic relationship
exists between the two branches (Figure 4). A ratio between tensile and compressive
strength of 1/12, 1/8, 1/6, 1/4, 1/3 and 1/2 has been considered. The best accordance
between analytical and experimental results has been obtained for the ratio equal to 1/8.

4 Numerical Results for Crack Propagation Problems

4.1 Mode I

The code developed by Ferretti (2003) has been extended to provide results in the
case of a concrete plate (Figure 5) tensioned at infinity by a load of intensity px = kp0
parallel to the x axis, and py = p0 parallel to the y axis. The plate has an initial
straight crack of length 2l0 oriented at an angle α0 to the x axis (β0 to the y axis).
Numerical results are here provided for various values of k and α0.
The py analysis for k = 0 and α0 = π/ 4, plotted on the deformed configuration of a

finite area around the crack, is shown in Figure 6 for the initial straight crack. In this
Figure, the darker red color corresponds to the maximal tensile stress, while the darker

Figure 5. Load and geometrical set-up of the cracked plate.
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Figure 6. 2D py analysis for the initial straight crack with k = 0, α0 = π/ 4.

Figure 7. 3D py analysis and lines of equal py for the initial straight crack with k = 0,
α0 = π/ 4.

green color corresponds to py = 0.
In Figure 7, the py analysis is performed in 3D, with the level lines plotted in the

plane py = 0. The significance of colors is the same as in Figure 6. The 3D plot correctly
shows how py reaches a value numerically close to 0 in correspondence with the crack
surface. The boxed area in the plane py = 0 of Figure 7 is the area of Figure 6. As all
the level lines are internal to the boxed area, it can be assumed with good approximation
that this area represents the stress extinction zone for the initial straight crack.
In Figure 8 and Figure 9, the 2D and 3D py analysis for k = 0 and α0 = π/ 4 is

shown for a generic crack propagation step. The lighter colors of Figures 8 and 9 with
respect to those of Figures 6 and 7 are representative of the progressive plate downloading
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Figure 8. 2D py analysis for a generic propagation step with k = 0, α0 = π/ 4.

Figure 9. 3D py analysis and lines of equal py for a generic propagation step with k = 0,
α0 = π/ 4.

corresponding to a crack propagation. For the same reason, the values in the third axis
of Figure 9 are smaller than those of Figure 7. Moreover, in Figure 8 it can be observed
how a mono-axial compressive state of stress of small entity (cyan color) arises in the
plate, due to the geometrical effect of the non-straight crack deformation in Mode I.
The crack trajectory is plotted in Figure 10 for the value of the angle α0 equal to

π/ 6, π/ 4 and π/ 3, and for the factor k equal to 0, 1/ 4, 1/ 2, 3/ 4 and 1. Also the two
meshes of Delaunay-Voronoi were plotted for k = 0, in order to show how the adaptive
mesh generator recreates the meshes for a generic crack propagation step (Delaunay mesh
in red and Voronoi mesh in blue, as indicated in Figure 2). This Figure shows that the
crack trajectory tends to approach an asymptote perpendicular to the external tensile
load for all the three cases with k = 0. The asymptotic behavior is also evident for k > 0,
but the asymptote is now oriented at an angle γ to the x axis which depends on k:
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k = 0; α0= π/ 6 k = 0; α0= π/ 4 k = 0; α0= π/ 3

k = 1/ 4; α0= π/ 6 k = 1/ 4; α0= π/ 4 k = 1/ 4; α0= π/ 3

k = 1/ 2; α0= π/ 6 k = 1/ 2; α0= π/ 4 k = 1/ 2; α0= π/ 3

k = 3/ 4; α0= π/ 6 k = 3/ 4; α0= π/ 4 k = 3/ 4; α0= π/ 3

k = 1; α0= π/ 6 k = 1; α0= π/ 4 k = 1; α0= π/ 3

Figure 10. Crack trajectory for α0 = π/ 6, π/ 4, π/ 3, and k = 0, 1/ 4, 1/ 2, 3/ 4, 1.

γ = f (k) . (4.1)

The angle γ does not depend on the initial inclination α0, since the crack tends to
propagate perpendicularly to the tensile principal direction of the uncracked plate.
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Figure 11. Relation between the angle γ and the ratio k.

For k = 1, the angle γ assumes the value π/ 4, in good accordance with the homo-
geneous state of stress represented by this load condition:

γ k=1 =
π

4
. (4.2)

The plot of the function γ = f (k) is provided in Figure 11 for the range of values
0 k 1.
If we know the behavior of the function γ = f (k) for 0 k 1, the behavior

of γ = f (k) for 1 < k + is also known. Actually, the asymptotes of the crack
trajectory for a given k and its reciprocal value, 1/k (Figure 12), are symmetric with
respect to the bisector of the first quadrant in Figure 5, y = x. That is to say, the value
assumed by γ for a given k is equal to the complementary angle of γ for 1/k:

γ
1

k
=

π

2
γ (k) . (4.3)

The plot of γ for the complete range of values 0 k + can be provided by means
of the following change of variable (Figure 13):

ψ = 1 e−k. (4.4)

The normalised limiting load in the direction of the y axis, py max
α0,k

py, is plotted

in Figure 14.a for each value of the angle α0 (β0 = 90 α0) and for the factor k equal,
respectively, to 0, 1/ 4, 1/ 2, 3/ 4 and 1. This figure exhibits a py limiting load increasing
with α0 in the field 0 k < 1, stating that α0 = 0 is the critical crack orientation angle
for all the biaxial load conditions with the x component lower than the y component.
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Figure 12. Crack trajectories for a given k and 1/k.
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Figure 13. Relation between the angle γ and the variable ψ.

The constant behaviour of the line obtained for k = 1 is in good agreement with the
homogeneous state of stress represented by this load condition. In this case, all the crack
orientations to the x axis return the same limiting load.
The load conditions corresponding to a given k and to its reciprocal, 1/ k, are sym-

metric with respect to a crack inclination α0 = 45
◦. In the intent to plot limiting load

curves for k and 1/ k satisfying the symmetry with respect to α0 = 45◦, the ideal limiting
load pid was defined as:

pid = p2x + p
2
y = p0 k2 + 1. (4.5)

The limiting load curves in the α0 pid max
α0,k

pid plane for 0 k + are plotted

in Figure 14.b. Each line in Figure 14.b represents the function fk = pid (α0), returning
the value of pid at a given value of k. All the fk lines together represent the function
f = pid (α0, k), defining the value of the ideal limiting load in function of the crack
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Figure 14. a) Normalised limiting load py in function of the crack inclination α0/β0
for 0 k 1; b) Normalised ideal limiting load pid in function of the crack inclination
α0/β0 for 0 k + .

orientation and the ratio between the loads in direction of the x and y axis. The
lower envelope of the fk curves was plotted in thick line in figure Figure 14.b. This line
represents the function F defined as:

F = F (α0, k) = min
α0=const

pid (α0, k) . (4.6)

The projection on the α0 k plane of the F function, said F , returns the value of kcr

(which is the same, the couple of normalised values pcrx and pcry ), corresponding to the
minimum value of ideal limiting load pid for a given α0. In other words, the function F
can be expressed as the solution of the following differential problem:

F = kcr (α0) :
∂pid (α0, k)

∂k
= 0. (4.7)

With the position in Eq. 4.4, it is possible to give a finite 3D representation of pid,
in function of α0 (β0) and k. Some examples of the 3D surfaces obtained for different
values of axis orientation are given in Figure 15. The Figure 15.a is the 3D equivalent
representation of the Figure 14.b, while the Figure 15.f is obtained by a 90◦ rotation of
the normalised pid surface around the normalised pid axis. This last plot represents the
function g = pid (k,α0) in the k first independent variable and α0 second independent
variable. The meridians of g give the functions gα0 = pid (k) for a given value of α0. The
lower envelope of the gα0 functions gives the function:

G = G (k,α0) = min
k=const

pid (k,α0) . (4.8)
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Figure 15. Some examples of finite 3D representation of pid, in function of β0 and k.

Said G the projection on the k α0 plane of the G function, G returns the angle αcr0
minimising pid at a given k. G is the solution of the following differential problem:

G = αcr0 (k) :
∂pid (α0, k)

∂α0
= 0. (4.9)

As all the gα0 functions intersect for k = 1 and they do not have any other point in
common, the α0 = αcr0 minimising pid at a given k results equal to:

αcr0 =
0 0 k < 1
[0, 90] k = 1
90 1 < k +

(4.10)
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4.2 Mode II

Results regarding the computation on a geometry of finite dimensions in Mode II are
here presented. The computation on finite geometries allows one to avoid the quantitative
discrepancy between the experimental results and those calculated via- stress intensity
factors (Parton and Morozov, 1978), due to the effect of the specimen boundaries on the
stress field around the growing crack. In the case of a beam with two opposite pre-cracks
submitted to skew-symmetric load in four-points, the numerical result was so accurate
as to allow the complete description of the crack trajectory (Figure 16).
In Figure 16, the darker blue color corresponds to the maximal compressive stress

and the darker red color corresponds to the maximal tensile stress.

Figure 16. Displacement-stress fields of a beam in skew-symmetric four point bending.

4.3 Mixed Mode

Mixed-Mode crack propagation occurs when the load is applied obliquely to the crack
direction and the crack opening direction. If this is the case, the crack can be divided
into two parts [Ferretti (2001)]:

part a) Mode I prevails and the two edges of the crack separate;
part b) Mode II prevails and the two edges of the crack slide over one another.

Depending upon the geometry of the domain and the boundary conditions, there may
be more than one part a) and more than one part b). Generally speaking, part b) occurs
whenever the combination of loading and boundary conditions forces the edges of the
crack to close at some point. Numerical simulation is only possible if the position of the
point S separating the two parts is known. The dominance of Mode I rather than Mode
II crack propagation involves different boundary conditions on the crack surfaces, and
it is necessary to specify all the boundary conditions before the simulation starts. In
general, S is a function of the load step and crack length, and is, thus, an unknown of
the Mixed-Mode problem. To determine S, it is necessary to proceed step-wise.
Numerical results on a concrete compressed cylinder are here presented.
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Figure 17. Delaunay and Voronoi discretization of the space domain, computed principal
stress directions and stress field in the y and x axis direction.

5 Conclusions

A crack propagation analysis has been presented for use with the Cell Method, which
combines nodal relaxation, intra-element propagation and remeshing. This method per-
mits the mesh dimensions to be refined at specific locations, to improve the solution
accuracy. The crack geometry is updated by introducing an extra node at the new crack
tip. This is accompanied by a relaxation of the node at the old crack tip.
The crack propagation is studied without using the stress intensity factors and without

having to define a model to treat the zone ahead of the crack tip. This allows one to em-
ploy the same numerical code for bodies of different dimensions, geometries and boundary
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conditions, and for materials of different constitutive laws. As an example of the code ver-
satility in front of the geometrical set-up, the interaction between several cracks oriented
at any inclination and propagating in plate of finite/infinite dimensions can be easily
investigated. As regards the versatility in front of the constitutive law, the numerical
analysis can be performed in the linear or non-linear field, with no adjunctive computa-
tional burdens. The stress intensity factors can be estimated a-posteriori, since the code
allows us to evaluate the compliance decrement following from a crack propagation.
Both Mode I, Mode II, and Mixed-Mode crack propagation have been considered in

this paper. The numerical model incorporates an original approach, which automatically
estimates which part of the boundary is subjected to Mode I loading, and which part
is subjected to Mode II loading. The numerical model subsequently estimates the size
of the relative displacements between nodes on the opposite sides of the crack surface
subjected to Mode II loading, allowing sliding contact to be described.
The numerical results show that the CM numerical code can give good predictions

for fracture mechanics problems, and validate the CM theory for fracture analysis.
The accuracy of the results indirectly validates the adopted innovative constitutive

law for concrete, which turned out to be size effect and failure mechanism insensitive.
Finally, the analysis for finite solids is performed directly, without having to apply

corrective factors to the solution on an infinite geometry in the same load conditions.
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