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The Cell Method (CM) is a computational tool that maintains critical
multidimensional attributes of physical phenomena in analysis. This
information is neglected in the differential formulations of the clas-
sical approaches of finite element, boundary element, finite volume,
and finite difference analysis, often leading to numerical instabilities
and spurious results.

This book highlights the central theoretical concepts of the CM that
preserve a more accurate and precise representation of the geometric

and topological features of variables for practical problem solving.

Important applications occur in fields such as electromagnetics, elec-
trodynamics, solid mechanics, and fluids. CM addresses non-locality
in continuum mechanics, an especially important circumstance in
modeling heterogeneous materials. Professional engineers and sci-
entists, as well as graduate students, are offered:

¢ A general overview of physics and its mathematical descriptions;
Guidance on how to build direct, discrete formulations;
Coverage of the governing equations of the CM, including
non-locality;
Explanations of the use of Tonti diagrams; and
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PREFACE

The computational methods currently used in physics are based on the discretization of the dif-
ferential formulation, by using one of the many methods of discretization, such as the finite ele-
ment method (FEM), the boundary element method (BEM), the finite volume method (FVM),
the finite difference method (FDM), and so forth. Infinitesimal analysis has without doubt
played a major role in the mathematical treatment of physics in the past, and will continue to
do so in the future, but, as discussed in Chapter 1, we must also be aware that several important
aspects of the phenomenon being described, such as its geometrical and topological features,
remain hidden, in using the differential formulation. This is a consequence not of performing
the limit, in itself, but rather of the numerical technique used for finding the limit. In Chapter
1, we analyze and compare the two most known techniques, the iterative technique and the
application of the Cancelation Rule for limits. It is shown how the first technique, leading to
the approximate solution of the algebraic formulation, preserves information on the trend of the
function in the neighborhood of the estimation point, while the second technique, leading to
the exact solution of the differential formulation, does not. Under the topological point of view,
this means that the algebraic formulation preserves information on the length scales associated
with the solution, while the differential formulation does not. On the basis of this observation,
it is also proposed to consider that the limit provided by the Cancelation Rule for limits is exact
only in the broad sense (i.e., the numerical sense), and not in the narrow sense (involving also
topological information). Moreover, applying the limit process introduces some limitations as
regularity conditions must be imposed on the field variables. These regularity conditions, in
particular those concerning differentiability, are the price we pay for using a formalism that is
both very advanced and easy to manipulate.

The Cancelation Rule for limits leads to point-wise field variables, while the iterative pro-
cedure leads to global variables (Section 1.2), which, being associated with elements provided
with an extent, are set functions (Section 1.3). The use of global variables instead of field vari-
ables allows us to obtain a purely algebraic approach to physical laws (Chapter 4, Chapter 5),
called the direct algebraic formulation. The term “direct” emphasizes that this formulation is
not induced by the differential formulation, as is the case for the so-called discrete formulations
that are often compared to it (Section 1.4). By performing densities and rates of the global vari-
ables, it is then always possible to obtain the differential formulation from the direct algebraic
formulation.

Since the algebraic formulation is developed before the differential formulation, and not
vice-versa, the direct algebraic formulation cannot use the tools of the differential formula-
tion for describing physical variables and equations. Therefore, the need for new suitable tools
arises, which allows us to translate physical notions into mathematical notions through the
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intermediation of topology and geometry. The most convenient mathematical setting where to
formulate a geometrical approach of physics is algebraic topology, the branch of the mathemat-
ics that develops notions corresponding to those of the differential formulations, but based on
global variables instead of field variables. This approach leads us to use algebra instead of dif-
ferential calculus. In order to provide a better understanding of what using algebra instead of
differential calculus means, Chapter 2 deals with exterior algebra (Section 2.1) and geometric
algebra (Section 2.2), the two fundamental settings for the geometric study of spaces not just of
geometric vectors, but of other vector-like objects such as vector fields or functions. Algebraic
topology and its features are then treated in Chapter 3.

The Cell Method (CM) is the computational method based on the direct algebraic formu-
lation developed by Enzo Tonti.! Tonti’s first papers on the direct algebraic formulation date
back to 1974 (see Reference Section). The main motivation of these early works is that physi-
cal integral variables are naturally associated with geometrical elements in space (points, lines,
surfaces, and volumes) and time elements (time instants and time intervals), an observation that
also allows us to answer the question on why analogies exist between different physical theories:

“Since in every physical theory there are integral variables associated with space and
time elements it follows that there is a correspondence between the quantities and
the equations of two physical theories in which the homologous quantities are those
associated with the same space-time elements.”

The CM was implemented starting from the late “90s. The first theory described by means of
the direct algebraic formulation was electromagnetism in 1995, followed by solid mechanics
and fluids.

The strength of the CM is that of associating any physical variable with the geometrical
and topological features (Chapter 1, Chapter 4), usually neglected by the differential formula-
tion. This goal is achieved by abandoning the habit to discretize the differential equations. The
governing equations are derived in algebraic manner directly, by means of the global variables,
leading to a numerical method that is not simply a new numerical method among many others.
The CM offers an interdisciplinary approach, which can be applied to the various branches of
classical and relativistic physics. Moreover, giving an algebraic system of physical laws is not
only a mathematical expedient, needed in computational physics because computers can only
use a finite number of algebraic operators. The truly algebraic formulation also provides us with
a numerical analysis that is more adherent to the physical nature of the phenomenon under con-
sideration (Chapter 1). Finally, differently from their variations, the global variables are always
continuous through the interface of two different media and in presence of discontinuities of
the domain or the sources of the problem (Section 1.2). Therefore, the CM can be usefully
employed in problems with domains made of several materials, geometrical discontinuities
(corners), and concentrated sources. It also allows an easy computation in contact problems.

Even if having shown the existence of a common mathematical structure underlying the
various branches of physics is one of the most relevant key-points of the direct algebraic for-
mulation, the purpose of this book is not that of explaining the origin of this common structure,

'Enzo Tonti (born October 30, 1935) is an Italian mathematical physicist, now emeritus professor at the University
of Trieste (Italy). He began his own scientific activity in 1962, working in the field of Mathematical Physics, the
development of mathematical methods for application to problems in physics.
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as already extensively done by Tonti, in his publications. Our focus will be above all on giving
the mathematical foundations of the CM, and highlighting some theoretical features of the CM,
not yet taken into account or adequately discussed previously. To this aim, the basics of the CM
will be exposed in this book only to the extent necessary to the understanding of the reader.

One of the contributions given in this book to the understanding of the CM theoretical
foundations is having emphasized that the Cancelation Rule for limits acts on the actual solu-
tion of a physical problem as a projection operator, as we have already pointed out. In Section
1.1.3, this new interpretation of the Cancelation Rule for limits is discussed in the light of the
findings of non-standard calculus, the modern application of infinitesimals, in the sense of non-
standard analysis, to differential and integral calculus. It is concluded that the direct algebraic
approach can be viewed as the algebraic version of non-standard calculus. In fact, the extension
of the real numbers with the hyperreal numbers, which is on the basis of non-standard analysis,
is equivalent to providing the space of reals with a supplementary structure of infinitesimal
lengths. In other words, it is an attempt to recover the loss of length scales due to the use of the
Cancelation Rule for limits, in differential formulation. For the same reasons, the CM can be
viewed as the numerical algebraic version of those numerical methods that incorporate some
length scales in their formulations. This incorporation is usually done, explicitly or implicitly,
in order to avoid numerical instabilities. Since the CM does not need to recover the length
scales, because the metric notions are preserved at each level of the direct algebraic formula-
tion, the CM is a powerful numerical instrument that can be used to avoid some typical spurious
solutions of the differential formulation. The problem of the numerical instabilities is treated
in Chapter 6, with special reference to electromagnetics, electrodynamics, and continuum
mechanics. Particular emphasis is devoted to the associated topic of non-locality in continuum
mechanics, where the classical local continuum concept is not adequate for modeling heteroge-
neous materials in the context of the classical differential formulation, causing the ill-posedness
of boundary value problems with strain-softening constitutive models. Further possible uses of
the CM for the numerical stability in other physical theories are under study, at the moment.

Some other differences and improvements, with respect to the papers and books on the CM
by other Authors, include:

*  The CM is viewed as a geometric algebra, which is an enrichment (or more precisely,
a quantization) of the exterior algebra (Section 2.2.1). Since the geometric algebra pro-
vides compact and intuitive descriptions in many areas, including quantum mechanics,
it is argued (Section 4.1) that the CM can be used even for applications to problems of
quantum mechanics, a field not yet explored, at the moment.

* The p-space elements and their inner and outer orientations are derived inductively, and
not deductively. They are obtained from the outer product of the geometric algebra and
the features of p-vectors (Section 2.2.2). It is shown that it is possible to establish an iso-
morphism between the orthogonal complement and the dual vector space of any subset
of vectors, which extends to the orientations. Some similarities with the general Banach
spaces are also highlighted. It is concluded that the notions of inner and outer orienta-
tions are implicit in geometric algebra.

* Each cell of a plane cell complex is viewed as a two-dimensional space, where the points
of the cell, with their labeling and inner orientation, play the role of a basis scalar, the
edges of the cell, with their labeling and inner orientation, play the role of basis vectors,
and the cell itself, with its inner orientation, plays the role of basis bivector (Section 3.5).



xii « PREFACE

* Space and time global variables are treated in a unified four-dimensional space/time cell
complex, whose elementary cell is the tesseract (Sections 3.8, 5.1.2-5.1.4). The resulting
approach shows several similarities with the four-dimensional Minkowski spacetime.
Moreover, the association between the geometrical elements of the tesseract and the
“space” and “time” global variables allows us to provide an explanation (Section 4.4) of
why the possible combinations between oriented space and oriented time elements are
in number of 32, as observed by Tonti and summarized in Section 4.1. It is also shown
how the coboundary process on the discrete p-forms, which is the tool for building the
topological equations in the CM, generalizes the spacetime gradient in spacetime algebra
(Section 5.1.2).

* The configuration variables with their topological equations, on the one hand, and the
source variables with their topological equations, on the other hand, are viewed as a
bialgebra and its dual algebra (Section 4.1). This new point of view allows us to give
an explanation of why the configuration variables are associated with space elements
endowed with a kind of orientation and the source variables are associated with space
elements endowed with the other kind orientation.

* The properties of the boundary and coboundary operators are used in order to find the
algebraic form of the virtual work theorem (Section 4.2).

+ It is made a distinction between the three coboundary operators, P, §€, and §¢, which,
being tensors, are independent of the labeling, the three incidence matrices, D, C, and
G, whose incidence numbers depend on the particular choice of labeling, and the three
matrices, TP, TC, and TC, which represent the coboundary operators for the given label-
ing of the cell complex (Section 5.1). In the special case where all the 1-cells of the three-
dimensional cell complex are of unit length, all the 2-cells are of unit area, and all the
3-cells are of unit volume, TP, T€, and TS equal D, C, and G, respectively. If this is not
the case, TP, TC, and TC are obtained with a procedure of expansion and assembling of
local matrices, which is derived from the procedure of expansion and assembling of the
stiffness matrix. The rows of D, C, and G give the right operators in the expansion step.

* Possible developments of the CM are investigated for the representation of reality
through a purely algebraic unifying gravitational theory, theorized by Einstein during
the last decades of his life (Section 6.4).

Elena
Bologna, October 2013
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Adequality, 13
Adjoint operator, 39
Algebraic dual space, 26
Algebraic formulation, 21-22
coboundary process role in, 146—167
Algebraic graph theory, 92
Algebraic non-locality, 208-213
Algebraic topology
definition of, 75
notions of, 74-77
Analogies, in physics, 168—177
Antidifferentiation, 3
Association principle, 16
Attaching map, 76
Attitude vector, 61
Average rates of change, 3

B

Backward Euler method, 191-192
Banach space, 61

Barycentric dual cell complex, 180
Big O notation, 192

Binomial coefficient, 51
Biorthogonal system, 38

Boson algebra, 124

Boundaries, 93-97

Boundary operators, 97

Boundary process, 98

C

Calculus, basics of, 2—4

Cancelation rule for limits, 815, 16

Cell complexes, 19, 20

CFL condition. See Courant—Friedrichs—
Lewy condition

Chain complex, 97-102

INDEX

Classification diagram, 126
for elastostatics of deformable solids, 171
elliptic equations in, 184
hyperbolic equations in, 185
mathematical structure of, 127135
parabolic equations in, 185
for plane elasticity of deformable solids, 175
for plane motion of perfect, incompressible
fluid, 176
Clifford algebra, 4041
Clifford number, 25
Coboundaries, 93-97
Coboundary operators, 101
Coboundary process, 101, 102, 146-167
discrete 0-forms in space domain, 151-155
discrete 1-forms in space/time
domain, 158-164
discrete 2-forms in space/time
domain, 164-167
discrete 0-forms in time domain, 155158
Cochain complex, 97-102
Cofaces, 80-88
Configuration variables, 114-126
Constitutive equations, 115
Continuous dual space, 26
Continuum mechanics, 204208
Contravariance, 3540
Contravariant metric tensor, 38
Convex topological vector space, 31
Corkscrew-rule. See Right-handed screw rule
Courant—Friedrichs—Lewy condition
(CFL condition), 195-196
Covariance, 35-40
Covariant metric tensor, 38
Covectors, 31

D
Differential equations, 4
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Differential formulation, 4
Differential material description, 17
Differentiation, 3

Digraphs, 90

Discrete p-forms, 103—105

Dot product, 38

Dual cell complexes, 119, 137-143, 178-181
Dual fundamental equations, 115
Dual graph, 92

Dual space element, 64

Dual vector spaces, 25-35
Duoprism, 108

E
Einstein notation, 36
Energetic variables, 114-126
Equipotential surfaces, 132
Euclidean vector, 55
Eulerian description, 16
Euler method, 190
Euler—Tricomi equation, 187, 188
Exterior algebra, 23—40
covariant and contravariant
components, 3540
exterior product in dual vector
spaces, 25-35
exterior product in vector spaces, 24-25

F

Faces, 8088

Facets of the k-polytope, 80

Families of m-faces, 87

Family of sets, 21

FDTD. See Finite-difference time-domain
method

Fermion algebra, 124

Field variables, 15-20

Figurate number, 80

Finite difference method, 21-22

Finite-difference time-domain method
(FDTD), 197

Finite element method, 21

Finite volume method, 21-22

First fundamental theorem of calculus, 3

Fourier transform, 185

Fundamental equations, 115

physical theory, 167-168

Fundamental identity of solid

mechanics, 129

G
GA. See Geometric algebra
Generalized form of virtual work
theorem, 128
Generalized or combinatorial form of Stokes
theorem, 105
Geometric algebra (GA), 40-71, 121
inner and outer products, geometric
product, 43-52
outer orientation of space elements, 58—71
space elements, inner orientation of, 52—58
Geometric topology, 75
Gibbs’ vector product, 24
Global variable
continuity of, 18
in space, 15
in time, 15
Global variables, 15-20, 113-143
Graph algebra, 92
Graph theory, 88-92

bl

H

Heat equation, 187

Hilbert space, 30

Homeomorphism, 74

Homomorphism, 35

Homotopy groups, 75

Hyperreal line, 13

Hyperreal numbers, 12

Hyperreals, 12. See also Hyperreal numbers

I

Incidence geometry, 91

Incidence matrices, 91, 93-97
primal and dual cell complexes, 137143
of two cell complexes, 135-137

Incidence numbers, 91

Incidence structure, 91

Indefinite integration, 3

Infinitesimal, 12

Inherited association, 169

Instantaneous rates of change, 3

Invariant theory, 35

K

K-blade, 24

Khayyam-Pascal triangle, 52
Knot theory, 75

Kronecker delta symbol, 37, 48
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Lagragian description, 17
Laplace—de Rham operator, 186
Laplace’s equation, 186
Law of Continuity, 12
Lax—Richtmyer theorem, 190
Leapfrog integration, 194-195
Limits
cancelation rule for, 8-15, 16
concept of, 2
€-0 definition, 4-8
left-hand limit, 5
one-sided limits, 5
right-hand limit, 5
Local linearity, 2
Low-dimensional topology, 75

M

Material equations, 115

Method of exhaustion, 11

Midpoint method, 193

Minkowski spacetime, 42

Mobius law for edges, 53

Multivector number, 25. See also Clifford
number

N

Natural isomorphism, 28

Non-degenerate bilinear mapping, 28

Non-local computational models, differential
formulation, 203-208

Non-local models, quantum
physics, 198-202

Non-standard analysis, 12

Nonstandard reals, 12. See also Hyperreal
numbers

Numerical solution, stability and instability
of, 184-198

0]
Oddness condition, 104
Oddness principle, 116

P

Pascal’s triangle, 52, 85-86, 89
Pentatope number, 82

Planar graph, 92

Planck scale, 213

Point of tangency, 3

Point-set topology, 75

Power set, 20

Primal cell complexes, 119, 137143,
178-181

Q

Quantization, 48
Quasi-brittle failure, 206

R

Reversible constitutive laws, physical
theories, 177-178

Riesz representation theorem, 30, 49, 117

Right-handed screw rule, 68

Right-hand grip rule, 63, 68

Runge—Kutta method, 193

S

Schléfli symbol, 107

Second fundamental theorem of calculus, 3

Set functions, 20-21

Shadow, 15

Simplex number, 82

Simplices, 77-80

Simplicial complexes, 77-80

Size-effect, 203

Source variables, 114-126

Spacetime algebra (STA), 157

Space—time classification diagram, 125

Spurious solutions, computational
physics, 183-213

STA. See Spacetime algebra

Standard part function, 13

Strain-softening, 203

Subcomplex, 76

Summation index, 36

Symplectic vector space, 124

T

Tangent line, 3

Tartaglia’s triangle, 52

Tensors, 27

Tetrahedron number, 82

Time elements, orientations of, 105-112

TLH. See Transcendental Law of
Homogeneity

Tonti diagram, 121

Topological equations, 114115

Topological graph theory, 91
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Topology, defined, 74 v

Transcendental Law of Vector decomposition, 49
Homogeneity (TLH), 14 Virtual work theorem, 129

Triangle number, 81 Voronoi dual cell complex, 180

8] Y

UGA. See Universal geometric algebra Yang Hui’s triangle, 52

Unital rings, 41 Yee lattice, 197

Universal geometric algebra (UGA), 42



	Indexes.pdf
	01_9781606506042_CH01_001-022
	02_9781606506042_CH02_023-072
	03_9781606506042_CH03_073-112
	04_9781606506042_CH04_113-144
	05_9781606506042_CH05_145-182
	06_9781606506042_CH06_183-214




