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The Cell Method (CM) is a computational tool that maintains critical 

multidimensional attributes of physical phenomena in analysis. This 

information is neglected in the differential formulations of the clas-

sical approaches of finite element, boundary element, finite volume, 

and finite difference analysis, often leading to numerical instabilities 

and spurious results. 

This book highlights the central theoretical concepts of the CM that 

preserve a more accurate and precise representation of the geometric 

and topological features of variables for practical problem solving. 

Important applications occur in fields such as electromagnetics, elec-

trodynamics, solid mechanics, and fluids. CM addresses non-locality 

in continuum mechanics, an especially important circumstance in 

modeling heterogeneous materials. Professional engineers and sci-

entists, as well as graduate students, are offered: 

•	 A	general	overview	of	physics	and	its	mathematical	descriptions;

•	 Guidance	on	how	to	build	direct,	discrete	formulations;

•	 Coverage	of		the	governing	equations	of	the	CM,	including	 

non-locality;

•	 Explanations	of		the	use	ofTonti	diagrams;	and	

•	 References	for	further	reading.
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PrefACe

The computational methods currently used in physics are based on the discretization of the dif-
ferential formulation, by using one of the many methods of discretization, such as the finite ele-
ment method (FEM), the boundary element method (BEM), the finite volume method (FVM), 
the finite difference method (FDM), and so forth. Infinitesimal analysis has without doubt 
played a major role in the mathematical treatment of physics in the past, and will continue to 
do so in the future, but, as discussed in Chapter 1, we must also be aware that several important 
aspects of the phenomenon being described, such as its geometrical and topological features, 
remain hidden, in using the differential formulation. This is a consequence not of performing 
the limit, in itself, but rather of the numerical technique used for finding the limit. In Chapter 
1, we analyze and compare the two most known techniques, the iterative technique and the 
application of the Cancelation Rule for limits. It is shown how the first technique, leading to 
the approximate solution of the algebraic formulation, preserves information on the trend of the 
function in the neighborhood of the estimation point, while the second technique, leading to 
the exact solution of the differential formulation, does not. Under the topological point of view, 
this means that the algebraic formulation preserves information on the length scales associated 
with the solution, while the differential formulation does not. On the basis of this observation, 
it is also proposed to consider that the limit provided by the Cancelation Rule for limits is exact 
only in the broad sense (i.e., the numerical sense), and not in the narrow sense (involving also 
topological information). Moreover, applying the limit process introduces some limitations as 
regularity conditions must be imposed on the field variables. These regularity conditions, in 
particular those concerning differentiability, are the price we pay for using a formalism that is 
both very advanced and easy to manipulate.

The Cancelation Rule for limits leads to point-wise field variables, while the iterative pro-
cedure leads to global variables (Section 1.2), which, being associated with elements provided 
with an extent, are set functions (Section 1.3). The use of global variables instead of field vari-
ables allows us to obtain a purely algebraic approach to physical laws (Chapter 4, Chapter 5), 
called the direct algebraic formulation. The term “direct” emphasizes that this formulation is 
not induced by the differential formulation, as is the case for the so-called discrete formulations 
that are often compared to it (Section 1.4). By performing densities and rates of the global vari-
ables, it is then always possible to obtain the differential formulation from the direct algebraic 
formulation.

Since the algebraic formulation is developed before the differential formulation, and not 
vice-versa, the direct algebraic formulation cannot use the tools of the differential formula-
tion for describing physical variables and equations. Therefore, the need for new suitable tools 
arises, which allows us to translate physical notions into mathematical notions through the 
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intermediation of topology and geometry. The most convenient mathematical setting where to 
formulate a geometrical approach of physics is algebraic topology, the branch of the mathemat-
ics that develops notions corresponding to those of the differential formulations, but based on 
global variables instead of field variables. This approach leads us to use algebra instead of dif-
ferential calculus. In order to provide a better understanding of what using algebra instead of 
differential calculus means, Chapter 2 deals with exterior algebra (Section 2.1) and geometric 
algebra (Section 2.2), the two fundamental settings for the geometric study of spaces not just of 
geometric vectors, but of other vector-like objects such as vector fields or functions. Algebraic 
topology and its features are then treated in Chapter 3.

The Cell Method (CM) is the computational method based on the direct algebraic formu-
lation developed by Enzo Tonti.1 Tonti’s first papers on the direct algebraic formulation date 
back to 1974 (see Reference Section). The main motivation of these early works is that physi-
cal integral variables are naturally associated with geometrical elements in space (points, lines, 
surfaces, and volumes) and time elements (time instants and time intervals), an observation that 
also allows us to answer the question on why analogies exist between different physical theories:

“Since in every physical theory there are integral variables associated with space and 
time elements it follows that there is a correspondence between the quantities and 
the equations of two physical theories in which the homologous quantities are those 
 associated with the same space-time elements.”

The CM was implemented starting from the late ‘90s. The first theory described by means of 
the direct algebraic formulation was electromagnetism in 1995, followed by solid mechanics 
and fluids.

The strength of the CM is that of associating any physical variable with the geometrical 
and topological features (Chapter 1, Chapter 4), usually neglected by the differential formula-
tion. This goal is achieved by abandoning the habit to discretize the differential equations. The 
governing equations are derived in algebraic manner directly, by means of the global variables, 
leading to a numerical method that is not simply a new numerical method among many others. 
The CM offers an interdisciplinary approach, which can be applied to the various branches of 
classical and relativistic physics. Moreover, giving an algebraic system of physical laws is not 
only a mathematical expedient, needed in computational physics because computers can only 
use a finite number of algebraic operators. The truly algebraic formulation also provides us with 
a numerical analysis that is more adherent to the physical nature of the phenomenon under con-
sideration (Chapter 1). Finally, differently from their variations, the global variables are always 
continuous through the interface of two different media and in presence of discontinuities of 
the domain or the sources of the problem (Section 1.2). Therefore, the CM can be usefully 
employed in problems with domains made of several materials, geometrical discontinuities 
(corners), and concentrated sources. It also allows an easy computation in contact problems.

Even if having shown the existence of a common mathematical structure underlying the 
various branches of physics is one of the most relevant key-points of the direct algebraic for-
mulation, the purpose of this book is not that of explaining the origin of this common structure, 

1 Enzo Tonti (born October 30, 1935) is an Italian mathematical physicist, now emeritus professor at the University 
of Trieste (Italy). He began his own scientific activity in 1962, working in the field of  Mathematical Physics, the 
 development of mathematical methods for application to problems in physics.



PREFACE  •  xi

as already extensively done by Tonti, in his publications. Our focus will be above all on giving 
the mathematical foundations of the CM, and highlighting some theoretical features of the CM, 
not yet taken into account or adequately discussed previously. To this aim, the basics of the CM 
will be exposed in this book only to the extent necessary to the understanding of the reader.

One of the contributions given in this book to the understanding of the CM theoretical 
foundations is having emphasized that the Cancelation Rule for limits acts on the actual solu-
tion of a physical problem as a projection operator, as we have already pointed out. In Section 
1.1.3, this new interpretation of the Cancelation Rule for limits is discussed in the light of the 
findings of non-standard calculus, the modern application of infinitesimals, in the sense of non-
standard analysis, to differential and integral calculus. It is concluded that the direct algebraic 
approach can be viewed as the algebraic version of non-standard calculus. In fact, the extension 
of the real numbers with the hyperreal numbers, which is on the basis of non-standard analysis, 
is equivalent to providing the space of reals with a supplementary structure of infinitesimal 
lengths. In other words, it is an attempt to recover the loss of length scales due to the use of the 
Cancelation Rule for limits, in differential formulation. For the same reasons, the CM can be 
viewed as the numerical algebraic version of those numerical methods that incorporate some 
length scales in their formulations. This incorporation is usually done, explicitly or implicitly, 
in order to avoid numerical instabilities. Since the CM does not need to recover the length 
scales, because the metric notions are preserved at each level of the direct algebraic formula-
tion, the CM is a powerful numerical instrument that can be used to avoid some typical spurious 
solutions of the differential formulation. The problem of the numerical instabilities is treated 
in Chapter 6, with special reference to electromagnetics, electrodynamics, and continuum 
mechanics. Particular emphasis is devoted to the associated topic of non-locality in continuum 
mechanics, where the classical local continuum concept is not adequate for modeling heteroge-
neous materials in the context of the classical differential formulation, causing the ill-posedness 
of boundary value problems with strain-softening constitutive models. Further possible uses of 
the CM for the numerical stability in other physical theories are under study, at the moment.

Some other differences and improvements, with respect to the papers and books on the CM 
by other Authors, include:

• The CM is viewed as a geometric algebra, which is an enrichment (or more precisely, 
a quantization) of the exterior algebra (Section 2.2.1). Since the geometric algebra pro-
vides compact and intuitive descriptions in many areas, including quantum mechanics, 
it is argued (Section 4.1) that the CM can be used even for applications to problems of 
quantum mechanics, a field not yet explored, at the moment.

• The p-space elements and their inner and outer orientations are derived inductively, and 
not deductively. They are obtained from the outer product of the geometric algebra and 
the features of p-vectors (Section 2.2.2). It is shown that it is possible to establish an iso-
morphism between the orthogonal complement and the dual vector space of any subset 
of vectors, which extends to the orientations. Some similarities with the general Banach 
spaces are also highlighted. It is concluded that the notions of inner and outer orienta-
tions are implicit in geometric algebra.

• Each cell of a plane cell complex is viewed as a two-dimensional space, where the points 
of the cell, with their labeling and inner orientation, play the role of a basis scalar, the 
edges of the cell, with their labeling and inner orientation, play the role of basis vectors, 
and the cell itself, with its inner orientation, plays the role of basis bivector (Section 3.5).
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• Space and time global variables are treated in a unified four-dimensional space/time cell 
complex, whose elementary cell is the tesseract (Sections 3.8, 5.1.2-5.1.4). The resulting 
approach shows several similarities with the four-dimensional Minkowski spacetime. 
Moreover, the association between the geometrical elements of the tesseract and the 
“space” and “time” global variables allows us to provide an explanation (Section 4.4) of 
why the possible combinations between oriented space and oriented time elements are 
in number of 32, as observed by Tonti and summarized in Section 4.1. It is also shown 
how the coboundary process on the discrete p-forms, which is the tool for building the 
topological equations in the CM, generalizes the spacetime gradient in spacetime algebra 
(Section 5.1.2).

• The configuration variables with their topological equations, on the one hand, and the 
source variables with their topological equations, on the other hand, are viewed as a 
bialgebra and its dual algebra (Section 4.1). This new point of view allows us to give 
an explanation of why the configuration variables are associated with space elements 
endowed with a kind of orientation and the source variables are associated with space 
elements endowed with the other kind orientation.

• The properties of the boundary and coboundary operators are used in order to find the 
algebraic form of the virtual work theorem (Section 4.2).

• It is made a distinction between the three coboundary operators, dD, dC , and dG, which, 
being tensors, are independent of the labeling, the three incidence matrices, D, C, and 
G, whose incidence numbers depend on the particular choice of labeling, and the three 
matrices, TD, TC, and TG, which represent the coboundary operators for the given label-
ing of the cell complex (Section 5.1). In the special case where all the 1-cells of the three-
dimensional cell complex are of unit length, all the 2-cells are of unit area, and all the 
3-cells are of unit volume, TD, TC, and TG equal D, C, and G, respectively. If this is not 
the case, TD, TC, and TG are obtained with a procedure of expansion and assembling of 
local matrices, which is derived from the procedure of expansion and assembling of the 
stiffness matrix. The rows of D, C, and G give the right operators in the expansion step.

• Possible developments of the CM are investigated for the representation of reality 
through a purely algebraic unifying gravitational theory, theorized by Einstein during 
the last decades of his life (Section 6.4).

Elena
Bologna, October 2013
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A
Adequality, 13
Adjoint operator, 39
Algebraic dual space, 26
Algebraic formulation, 21–22

coboundary process role in, 146–167
Algebraic graph theory, 92
Algebraic non-locality, 208–213
Algebraic topology

definition of, 75
notions of, 74–77

Analogies, in physics, 168–177
Antidifferentiation, 3
Association principle, 16
Attaching map, 76
Attitude vector, 61
Average rates of change, 3

B
Backward Euler method, 191–192
Banach space, 61
Barycentric dual cell complex, 180
Big O notation, 192
Binomial coefficient, 51
Biorthogonal system, 38
Boson algebra, 124
Boundaries, 93–97
Boundary operators, 97
Boundary process, 98

C
Calculus, basics of, 2–4
Cancelation rule for limits, 8–15, 16
Cell complexes, 19, 20
CFL condition. See Courant–Friedrichs–

Lewy condition
Chain complex, 97–102

Classification diagram, 126
for elastostatics of deformable solids, 171
elliptic equations in, 184
hyperbolic equations in, 185
mathematical structure of, 127–135
parabolic equations in, 185
for plane elasticity of deformable solids, 175
for plane motion of perfect, incompressible 

fluid, 176
Clifford algebra, 40–41
Clifford number, 25
Coboundaries, 93–97
Coboundary operators, 101
Coboundary process, 101, 102, 146–167

discrete 0-forms in space domain, 151–155
discrete 1-forms in space/time  

domain, 158–164
discrete 2-forms in space/time  

domain, 164–167
discrete 0-forms in time domain, 155–158

Cochain complex, 97–102
Cofaces, 80–88
Configuration variables, 114–126
Constitutive equations, 115
Continuous dual space, 26
Continuum mechanics, 204–208
Contravariance, 35–40
Contravariant metric tensor, 38
Convex topological vector space, 31
Corkscrew-rule. See Right-handed screw rule
Courant–Friedrichs–Lewy condition  

(CFL condition), 195–196
Covariance, 35–40
Covariant metric tensor, 38
Covectors, 31

D
Differential equations, 4
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Differential formulation, 4
Differential material description, 17
Differentiation, 3
Digraphs, 90
Discrete p-forms, 103–105
Dot product, 38
Dual cell complexes, 119, 137–143, 178–181
Dual fundamental equations, 115
Dual graph, 92
Dual space element, 64
Dual vector spaces, 25–35
Duoprism, 108

E
Einstein notation, 36
Energetic variables, 114–126
Equipotential surfaces, 132
Euclidean vector, 55
Eulerian description, 16
Euler method, 190
Euler–Tricomi equation, 187, 188
Exterior algebra, 23–40

covariant and contravariant  
components, 35–40

exterior product in dual vector  
spaces, 25–35

exterior product in vector spaces, 24–25

F
Faces, 80–88
Facets of the k-polytope, 80
Families of m-faces, 87
Family of sets, 21
FDTD. See Finite-difference time-domain 

method
Fermion algebra, 124
Field variables, 15–20
Figurate number, 80
Finite difference method, 21–22
Finite-difference time-domain method 

(FDTD), 197
Finite element method, 21
Finite volume method, 21–22
First fundamental theorem of calculus, 3
Fourier transform, 185
Fundamental equations, 115

physical theory, 167–168
Fundamental identity of solid  

mechanics, 129

G
GA. See Geometric algebra
Generalized form of virtual work  

theorem, 128
Generalized or combinatorial form of Stokes’ 

theorem, 105
Geometric algebra (GA), 40–71, 121

inner and outer products, geometric  
product, 43–52

outer orientation of space elements, 58–71
space elements, inner orientation of, 52–58

Geometric topology, 75
Gibbs’ vector product, 24
Global variable

continuity of, 18
in space, 15
in time, 15

Global variables, 15–20, 113–143
Graph algebra, 92
Graph theory, 88–92

H
Heat equation, 187
Hilbert space, 30
Homeomorphism, 74
Homomorphism, 35
Homotopy groups, 75
Hyperreal line, 13
Hyperreal numbers, 12
Hyperreals, 12. See also Hyperreal numbers

I
Incidence geometry, 91
Incidence matrices, 91, 93–97

primal and dual cell complexes, 137–143
of two cell complexes, 135–137

Incidence numbers, 91
Incidence structure, 91
Indefinite integration, 3
Infinitesimal, 12
Inherited association, 169
Instantaneous rates of change, 3
Invariant theory, 35

K
K-blade, 24
Khayyam-Pascal triangle, 52
Knot theory, 75
Kronecker delta symbol, 37, 48
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L
Lagragian description, 17
Laplace–de Rham operator, 186
Laplace’s equation, 186
Law of Continuity, 12
Lax–Richtmyer theorem, 190
Leapfrog integration, 194–195
Limits

cancelation rule for, 8–15, 16
concept of, 2
ε-δ definition, 4–8
left-hand limit, 5
one-sided limits, 5
right-hand limit, 5

Local linearity, 2
Low-dimensional topology, 75

M
Material equations, 115
Method of exhaustion, 11
Midpoint method, 193
Minkowski spacetime, 42
Möbius law for edges, 53
Multivector number, 25. See also Clifford 

number

N
Natural isomorphism, 28
Non-degenerate bilinear mapping, 28
Non-local computational models, differential 

formulation, 203–208
Non-local models, quantum  

physics, 198–202
Non-standard analysis, 12
Nonstandard reals, 12. See also Hyperreal 

numbers
Numerical solution, stability and instability 

of, 184–198

O
Oddness condition, 104
Oddness principle, 116

P
Pascal’s triangle, 52, 85–86, 89
Pentatope number, 82
Planar graph, 92
Planck scale, 213
Point of tangency, 3

Point-set topology, 75
Power set, 20
Primal cell complexes, 119, 137–143, 

178–181

Q
Quantization, 48
Quasi-brittle failure, 206

R
Reversible constitutive laws, physical  

theories, 177–178
Riesz representation theorem, 30, 49, 117
Right-handed screw rule, 68
Right-hand grip rule, 63, 68
Runge–Kutta method, 193

S
Schläfli symbol, 107
Second fundamental theorem of calculus, 3
Set functions, 20–21
Shadow, 15
Simplex number, 82
Simplices, 77–80
Simplicial complexes, 77–80
Size-effect, 203
Source variables, 114–126
Spacetime algebra (STA), 157
Space–time classification diagram, 125
Spurious solutions, computational  

physics, 183–213
STA. See Spacetime algebra
Standard part function, 13
Strain-softening, 203
Subcomplex, 76
Summation index, 36
Symplectic vector space, 124

T
Tangent line, 3
Tartaglia’s triangle, 52
Tensors, 27
Tetrahedron number, 82
Time elements, orientations of, 105–112
TLH. See Transcendental Law of  

Homogeneity
Tonti diagram, 121
Topological equations, 114–115
Topological graph theory, 91
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Topology, defined, 74
Transcendental Law of  

Homogeneity (TLH), 14
Triangle number, 81

U
UGA. See Universal geometric algebra
Unital rings, 41
Universal geometric algebra (UGA), 42

V
Vector decomposition, 49
Virtual work theorem, 129
Voronoi dual cell complex, 180

Y
Yang Hui’s triangle, 52
Yee lattice, 197
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