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Abstract: - The Cell Method (CM) associates any physical variable with the geometrical and topological 
features, usually neglected by the differential formulation. This goal is achieved by abandoning the habit to 
discretize the differential equations. The governing equations are then derived in algebraic manner directly, by 
means of the global variables. In the original formulation of the CM, the association between physical variables 
and geometry is made on the basis of physical considerations. In this paper, we analyze the same association 
under the mathematical point of view. This allows us to view the CM as a geometric algebra, which is an 
enrichment of the exterior algebra. The -spacep  elements and their inner and outer orientations are derived 

inductively. They are obtained from the outer product of the geometric algebra and the features of -vectorsp . 
Space and time global variables are treated in a unified four-dimensional space/time cell complex, whose 
elementary cell is the tesseract. Moreover, the configuration variables with their topological equations, on the 
one hand, and the source variables with their topological equations, on the other hand, are viewed as a bialgebra 
and its dual algebra. 
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1 Introduction 
Of special importance for the philosophy of the Cell 
Method (CM) are the geometric interpretations of 
the operations on vectors, provided by both the 
exterior and geometric algebra, and the notions of 
extension of a vector by another vector, multivector 
(or -vectorp ), dual vector space, bialgebra, and 
covector. The geometric approach allows us to view 
the space elements and the time elements as 

-vectorsp  of a geometric algebra, all inductively 
generated by the outer product of the geometric 
algebra. From the attitude and orientation of 

-vectorsp , we then derive the two kinds of 

orientation for -vectorsp , inner and outer 
orientations, which apply to both the space and the 
time elements. We also discuss how the orientation 
of a -vectorp  is induced by the orientation of the 

 1 -vectorsp   on its boundary, and how the inner 

orientation of the attitude vector of a vector equals 
the outer orientation of its covector. This establishes 
an isomorphism between the orthogonal 
complement and the dual vector space of any subset 
of vectors. One of the most remarkable 
consequences of the relationship between inner and 
outer orientations is that the outer orientation 
depends on the dimension of the embedding space, 
while the inner orientation does not. 

2 Some Basics of the Exterior Algebra 
The exterior algebra provides an algebraic setting in 
which to answer geometric questions. It is the 
largest algebra that supports an alternating product 
on vectors. Its product is the exterior product, or 
wedge product. 

The exterior product of any number k  of vectors 
can be defined and is sometimes called a -bladek . It 
lives in a geometrical space known as the -thk  
exterior power. The magnitude of the resulting 

-bladek  is the volume of the -dimensionalk  
parallelotope whose sides are the given vectors, just 
as the magnitude of the scalar triple product of 
vectors in three dimensions gives the volume of the 
parallelepiped spanned by those vectors. In 
particular, The exterior product of two vectors a  
and b , denoted by a b , is called a 2-vector, or 
bivector, and lives in a space called the exterior 
square, a geometrical vector space that differs from 
the original space of vectors. The magnitude of 
a b  can be interpreted as the area of the 

parallelogram with sides a  and b , which, in three 
dimensions, can also be computed using the cross 
product of the two vectors.  

Since the exterior product is antisymmetric, 
b a  is the negation of the bivector a b , 

producing the opposite orientation. 



Any vector space, V , has a corresponding dual 
vector space (or just dual space), *V . Given any 
vector space V  over a field F , the algebraic dual 
space *V , also called the ordinary dual space, or 
simply the dual space, is defined as the set of all 
linear maps (linear functionals) from V  to F : 

:V F  ,  v v . (1) 

If V  is finite-dimensional, then *V  has the same 
dimension as V . Dual vector spaces for finite-
dimensional vector spaces can be used for studying 
tensors. 

The pairing of a functional   in the dual space 

*V  and an element x  of V  is sometimes denoted 
by a bracket: 

   , ,x x x    . (2) 

The pairing defines a non-degenerate bilinear 
mapping: 

  *, :V V F   . (3) 

Specifically, every non-degenerate bilinear form on 
a finite-dimensional vector space V  gives rise to an 
isomorphism from V  to *V , ,  . Then, there is a 

natural isomorphism: 
*V V , *v v ; (4) 

given by: 

 * : ,v w v w ; (5) 

where **v V  is said to be the dual vector of v V . 
A topology on the dual space, *X , of a 

topological vector space, X , over a topological 
field, K , can be defined as the coarsest topology 
(the topology with the fewest open sets) such that 
the dual pairing *X X K  is continuous. This 
turns the dual space into a locally convex 
topological vector space. This topology is called the 
weak* topology, that is, a weak topology defined on 
the dual space *X . In order to distinguish the weak 
topology from the original topology on X , the 
original topology is often called the strong topology. 
If X  is equipped with the weak topology, then 
addition and scalar multiplication remain continuous 
operations, and X  is a locally convex topological 
vector space. 

Elements of the algebraic dual space *V  are 
sometimes called covectors, or 1-forms, and are 
denoted by bold, lowercase Greek. They are linear 
maps from V  to its field of scalars. 

if V  is a vector space of any (finite) dimension, 
then the level sets of a linear functional in *V  are 
parallel hyperplanes in V , and the action of a linear 
functional on a vector can be visualized in terms of 
these hyperplanes, or -planesp , in the sense that the 
number of (1-form) hyperplanes intersected by a 

vector equals the interior product between the 
covector and the vector (Fig.1). 

Fig.1: Linear functionals (1-forms)  ,  , and 

vectors u , v , w , in 3d Euclidean space. 
 

Fig.2: Geometric interpretation for the exterior 
product of k  1-forms (  , , ) to obtain an 

-formk  (“mesh” of coordinate surfaces, here 
planes), for 1,2,3k  . The “circulations” show 

orientation. 

 



In multilinear algebra, a multilinear form, or 
-formk , is a map of the type:  
: kf V K ; (6) 

where V  is a vector space over the field K , which 
is separately linear in each its k  variables. The 

-formsk  are generated by the exterior product on 
covectors (Fig.2). 
 
 

3 An Insight into Geometric Algebra 
Vector algebra and geometric algebra (GA) are 
alternative approaches to providing additional 
algebraic structures on vector spaces, with 
geometric interpretations. Vector algebra is specific 
to Euclidean three-space, while geometric algebra 
uses multilinear algebra and applies in all 
dimensions and signatures. They are mathematically 
equivalent in three dimensions, though the 
approaches differ. 

Geometric algebra gives emphasis on geometric 
interpretations and physical applications. A 
geometric algebra is the Clifford algebra  ,V Q  

of a vector space over the field of real numbers 
endowed with a quadratic form. 

The distinguishing multiplication operation that 
defines the geometric algebra as a unital ring is the 
geometric product. Taking the geometric product 
among vectors can yield bivectors, trivectors, or 
general -vectorsp . The addition operation 
combines these into general multivectors. This 
includes, among other possibilities, a well-defined 
sum of a scalar and a vector, an operation that is 
impossible by the traditional vector addition. 

We may write the geometric product of any two 
vectors a  and b  as the sum of a symmetric product 
and an antisymmetric product: 

   1 1

2 2
ab ab ba ab ba    . (7) 

The symmetric product in Eq. (7) defines the inner 
product of vectors a  and b : 

    2 2 21 1
:

2 2
a b ab ba a b a b       ; (8) 

which is a real number, because it is a sum of 
squares, and is not required to be positive definite. It 
is not specifically the inner product on a normed 
vector space. 

The antisymmetric product in Eq. (7) is equal to 
the exterior product of the contained exterior 
algebra and defines the outer product of vectors a  
and b : 

 1
:

2
a b ab ba   . (9) 

Fig.3: The extension of vector a  along vector b  
provides the geometric interpretation of a b . 

 
Geometrically, the outer product a b  can be 
viewed by placing the tail of the arrow b  at the head 
of the arrow a  and extending vector a  along vector 
b  (Fig.3). The resulting entity is a two-dimensional 
subspace, and we call it a bivector. It has an area 
equal to the size of the parallelogram spanned by a  
and b . The senses of a  and b  orientate the sides of 
the parallelogram and define a sense of traversal of 
its boundary. In the case of Fig.3, the traversal sense 
is a clockwise sense, which can be depicted by a 
clockwise arc.  

The geometric interpretation of the outer product 
b a  is achieved by placing the tail of the arrow a  
at the head of the arrow b  and extending vector b  
along vector a . This reverses the circulation of the 
boundary, while it does not change the area of the 
parallelogram spanned by a  and b . 

In conclusion, the geometric product in Eq. (7) 
can be written as the sum between a scalar and a 
bivector: 
ab a b a b    . (10) 
The scalar and the bivector are added by keeping the 
two entities separated, in the same way in which, in 
complex numbers, we keep the real and imaginary 
parts separated. 

One can consider the Clifford algebra  ,V Q  

as an enrichment (or more precisely, a quantization) 
of the exterior algebra  V  on V  with a 

multiplication that depends on Q . For nonzero Q  
there exists a canonical linear isomorphism between 

 V  and  ,V Q , whenever the ground field K  

does not have characteristic two. That is, they are 
naturally isomorphic as vector spaces, but with 
different multiplications. 

The -vectorsp  are charged with three attributes, 
or features: attitude, orientation, and magnitude. The 
second feature, taken singularly and combined with 
the first feature, gives rise to the two kinds of 
orientation in space, inner and outer orientations. 



3.1 Inner Orientation of Space Elements 
The second feature of -vectorsp , the orientation, is, 
more properly, an inner orientation, because it does 
not depend on the embedding space. The term 
“inner” refers to the fact that the circulations are 
defined for the boundaries of the elements, by 
choosing an order for the vertexes. Therefore, we 
move and stay on the boundaries of the elements, 
without going out from the elements themselves. 
 

Fig.4: Geometric interpretation for the exterior 
product of p  vectors to obtain an -vectorp , where 

1,2,3p  . The “circulations” show the inner 
orientation. 

 
In GA, the inner orientation is the geometric 
interpretation of the exterior geometric product 
among vectors. In particular, the inner orientation of 
a plane surface can be viewed as the orientation of 
the exterior product between two vectors u  and v  
(the bivector u v ) of the plane on which the 
surface lies (Fig.4). Analogously, the inner 
orientation of a volume can be viewed as the 
orientation of the exterior product between three 
vectors u , v , and w  (the trivector  u v w ) of 
the three-dimensional space containing the volume 
(Fig.4).Fig.4 

It is worth noting that the inner orientation of a 
surface is not positive or negative in itself. Neither 
choosing the sign of the inner orientation can be 
considered an arbitrary convention. Providing the 
inner orientation of a surface with a sign makes 
sense only when the surface is “watched” by an 
external observer, that is, only when the surface is 

studied in an embedding space of dimension greater 
than 2, the dimension of the surface. 

The six faces of the positive trivector  u v w  
in Fig.4 have a negative inner orientation when they 
are watched by an external observer, while they 
have a positive inner orientation when they are 
watched by a local observer that is inside the 
volume. This happens since the inner volume of the 
trivector is the intersection of the six positive half-
spaces, that is, the half-spaces of the six observers 
that watch the positive surfaces originated by the 
trivector. By relating the sign of the inner 
orientation to the external observer also in this 
second case, the positive inner orientation of a 
volume is the one watched by the external observer. 
As a consequence, the inner orientation of a volume 
is positive when the inner orientations of all its faces 
are negative, as in Fig.4. 

The concept of inner orientation defined above 
did not apply to zero-dimensional vector spaces 
(points). However, since it is useful to be able to 
assign different inner orientations to a point, in this 
paper we extend the outer product to zero-
dimensional vectors: 
P Q u ; (11) 

which has the geometrical meaning of point P  
extended toward point Q . The extension of the 
outer product preserves the antisymmetric property 
of the product, since Q P  (point Q  extended 
toward point P ) is the negation of P Q : 

  Q P u . (12) 
Analogously, a point extended by a vector results in 
an oriented length, which can be represented by the 
vector itself (Fig.5). Consequently, a bound vector 
with origin in P ,  ,P u , can be seen as the outer 

product between P  and the free vector u : 

 ,P u P u . (13) 

Then, since the bound vector  ,P u  is often denoted 

by simply u , as its free vector, we can also write 
 P u u . (14) 

For consistency, we must therefore define the outer 
product between the vector u  and the point P  as 
the negation of u : 
 u P u . (15) 

In analogy to the direction of the vector product 
u v , which is orthogonal both to u  and v , the 

result of the operation P Q , defined in 1  on 

elements of 0 , has the direction of a line that is 
orthogonal both to P  and Q . In three-dimensional 
space, where we can define infinite sub-spaces of 
dimension 1, each provided with its own basis, this 
operation produces elements in the direction of any 

 



line of the three-dimensional space. Being 
orthogonal to each direction of the three-
dimensional space, the point is orthogonal to the 
three-dimensional space itself and to each volume of 
the space. 

We can define two inner orientations of a point, 
the outward and the inward orientations (Fig.6). In 
the first case, the point is called a source, while, in 
the second case, is called a sink. 

 

Fig.5: The inner orientation of a -spacep  element is 

induced by the  1 -spacep   elements on its 

boundary. 
 

Fig.6: Positive and negative inner orientations of a 
point. 

By making use of the notion of observer in this 
latter case too, each incoming line can be viewed as 
the sense along which the external observer watches 
the point. In this sense, a sink is a point with a 
positive inner orientation, while a source is a point 
with a negative inner orientation (Fig.6). 

Even the trivector can be viewed as an extension. 
In fact, it is originated by a bivector extended by a 
third vector (Fig.5). 

In conclusion, since the positive or negative 
inner orientation of a -spacep  element is induced 
by the positive or negative inner orientation of the 

 1 -spacep   elements on its boundary, we derive 

the inner orientations and their signs inductively 
(Fig.5). This allows us to extend the procedure for 
finding the inner orientation of the space elements to 
spaces of any dimension. 
 
 
3.2 Outer Orientation of Space Elements 
The attitude is part of the description of how 

-vectorsp  are placed in the space they are in. Thus, 
the notion of attitude is related to the notion of 
embedding of a -vectorp  in its space, or space 
immersion. In particular, a vector in three 
dimensions has an attitude given by the family of 
straight lines parallel to it (possibly specified by an 
unoriented ring around the vector), a bivector in 
three dimensions has an attitude given by the family 
of planes associated with it (possibly specified by 
one of the normal lines common to these planes), 
and a trivector in three dimensions has an attitude 
that depends on the arbitrary choice of which 
ordered bases are positively oriented and which are 
negatively oriented. 

Between a -vectorp  and its attitude there exists 
the same kind of relationship that exists between an 
element a  of a set X  and the equivalence class of 
a  in the quotient set of X  by a given equivalence 
relationship. In the special case of the attitude of a 
vector in the three-dimensional space, the set is that 
of the straight lines and the equivalence relationship 
is that of parallelism between lines. One of the 
invariants of the equivalence relation of parallelism 
is the family of planes that are normal to the lines in 
a given equivalence class. Since we can choose any 
of the parallel planes for representing the invariant, 
we can speak both in terms of family of parallel 
planes and in terms of one single plane. 

Similar considerations may also be applied to the 
relationship between bivectors and their attitudes, or 
trivectors and their attitudes. Thus, we can describe 
the attitude of a -vectorp  either in terms of its 

 



equivalence class (the family of parallel lines, when 
the -vectorp  is a vector), or in terms of its class 
invariant (the family of normal planes, when the 

-vectorp  is a vector), that is, the equivalence class 
of its orthogonal complement. In particular, the 
attitude of a vector u  can be viewed as a family of 
normal planes (Fig.7), each one originated by the 
translation of a plane normal to u , along the 
direction of u  (the planes span the direction of u ). 
Equivalently, the attitude of u  can be represented 
by an arbitrary plane of the family of normal planes. 

 

Fig.7: Geometric interpretation of the attitude of a 
-vectorp  in terms of class invariants. 

 
Analogously, the attitude of a bivector u v  can be 
viewed as two families of parallel planes (Fig.7), the 
first family normal to u  and the second family 
normal to v  (the planes span both the directions of 
u  and v ). Since u  and v  are linearly independent 
in their common plane, the planes that span both the 
directions of u  and v  originate all the planes 
normal to u v , that is, all the planes parallel to 
u v . These planes can be represented by the line 

of intersection between an arbitrary plane of the first 
family and an arbitrary plane of the second family 
(Fig.7). The intersection line is parallel to all planes 
of the two families and to vector u v . 

Finally, the attitude of a trivector  u v w  can 
be viewed as three families of parallel planes 
(Fig.7), provided that the three families are normal 
to u , v , and w , respectively (the planes span the 
three directions of u , v , and w ). If u , v , and w  
are linearly independent, then the three families 

originate all the plane of the three-dimensional 
space. A possible representation of all the planes of 
the three-dimensional space, under the equivalence 
relation of parallelism, is achieved by choosing a 
point of the space and considering the set of all the 
planes that contain the point. Being common to all 
the planes, the point can be used for representing the 
whole set of planes, which, in turn, represents all the 
planes of the three-dimensional space. 

In conclusion, as for the inner orientation of the 
-vectorsp , also the attitude of the -vectorsp  is 

defined inductively, starting from the 1-vector . This 
allows us to define the attitude of the -vectorsp  
even in dimension greater than 3. 

The same family of parallel planes represents 
both the set of planes that are normal to u  and the 
set of hyperplanes of *u , the dual vector of u . 
Consequently, the attitude of the class invariant of a 
vector u  equals the attitude of the covector *u . 
This is ultimately a consequence of the Riesz 
representation theorem, which allows us to represent 
a covector by its related vector. This establishes a 
bijective correspondence between the attitude of the 
orthogonal complement of a vector u  and the 
attitude of the covector, *u , of u . 

The bijective correspondence extends also to the 
second feature, that is, the orientations of a vector 
and its covector, since the order of the hyperplanes 
is determined by the sense of u . This allows us to 
define a second type of orientation for the covector 

*u , which we call the outer orientation since it is 
induced by the (inner) orientation of u  and has the 
geometrical meaning of sense of traversal of the 
hyperplanes of *u . In doing so, we have established 
a bijective correspondence between the inner 
orientation of a vector and the outer orientation of 
its covector. On the other hand, since it is always 
possible to define an inner orientation for *u  (by 
choosing a basis bivector for *u ), the duality 
between vectors and covectors will result in an outer 
orientation for u , induced by the inner orientation 
of *u . Therefore, the inner orientation of a covector 
induces an outer orientation on its vector. 

Moreover, since the equivalence classes of *u  
are in bijective correspondence with the attitude of 
u , to fix the inner orientation of *u  is also 
equivalent to fixing an orientation, which is an inner 
orientation, for the attitude of u . In doing so, the 
attitude of u  becomes an attitude vector, and its 
inner orientation equals the outer orientation of u . 
Therefore, by providing the attitude with an 
orientation, we establish an isomorphism between 
the orthogonal complement and the dual vector 



space of any subset of vectors. This means that the 
pairing between the geometric algebra and its dual 
can be described by the invariants of the 
equivalence relation of parallelism. 

In conclusion, we can define the orientation of a 
vector by providing either its inner orientation or the 
inner orientation of its attitude vector (which is also 
the outer orientation of the vector). The latter, in 
turn, is equal to the inner orientation of the covector. 

The relationship between the inner and outer 
orientations and the related notion of orthogonal 
complement (or dual element) are implicit, both in 
mathematics and physics. They are given by the 
right-hand rule, which is equivalent to the right-
hand grip rule and the right-handed screw rule. We 
make them explicit in this paper because they are at 
the basis of the CM description of physics. 

The dual of a -dimensionalp  space element has 

dimension n p , in the -dimensionaln  space. This 
means that the outer orientation depends on the 
dimension of the embedding space, while the inner 
orientation does not. 
 
 

4 The Cell Method 
We can classify the physical variables according to 
their nature, global or local. Broadly speaking, the 
global variables are those variables that are neither 
densities nor rates of other variables. The field 
variables are obtained from the global variables as 
densities of space global variables and rates of time 
global variables. Due to their point-wise nature, they 
are local variables. 

In the differential formulation, some variables 
arise directly as functions of points and time 
instants, while the remaining variables are reduced 
to points and time instants functions by performing 
densities and rates. Thus, the physical variables of 
the differential formulation are point-wise and/or 
instant-wise field functions. 

In the algebraic formulation of the CM, on the 
contrary, we use global variables. In doing so, the 
algebraic formulation preserves the length and time 
scales of the global physical variables. Therefore, 
the physical variables, in spatial description, turn 
out to be naturally associated with one of the four 
space elements (point, line, surface, and volume, 
which are denoted by P , L , S , and V ) and/or 
with one of the two time elements (time instant and 
time interval, which are denoted by I  and T ). 

Global variables are essential to the philosophy 
of the CM, since, by using these variables, it is 
possible to obtain an algebraic formulation directly 
and, what is most important, the global variables 

involved in obtaining the formulation do not have to 
be differentiable functions. The main difference 
between the two formulations – algebraic and 
differential – lies precisely in the fact that the limit 
process is used in the latter. In effect, since 
calculating the densities and rates of the domain 
variables is based on the assumption that global 
variables are continuous and differentiable, the 
range of applicability of differential formulation is 
restricted to regions without material discontinuities 
or concentrated sources, while that of the algebraic 
formulation is not restricted to such regions. 

In the CM, the global variables are associated 
with the related space elements of the cell 
complexes, that is, the four space elements, P , L , 
S , and V , of the cell complexes. This allows us to 
describe global variables directly. The inner and 
outer orientations of the space elements used by the 
CM, assumed on the basis of physical 
considerations until now, find their mathematical 
foundations in the previous discussion on the GA. 
Also the generalization of the time axis is made by 
means of cell complexes, which, in this second case, 
are associated with the two time elements, that is, 
time instant, I , and time intervals, T . 
 
 
4.1 Inner and Outer Orientations of Time 

Elements 
Finding the orientations of the time elements could 
be viewed in the same way that finding the inner 
and outer orientations of points and lines in a one-
dimensional space. In fact, the time axis defines a 
one-dimensional cell complex, where the time 
instants, I , are points (nodes) and the time intervals, 
T , are the line segments that connect the points (the 
time instants are the boundary, or the faces, of the 
time intervals). Moreover, in a one-dimensional 
space the dual (orthogonal complement) of a point is 
a line segment and the dual of a line segment is a 
point. As far as the inner orientation is concerned, 
all the time instants, both those along the positive 
semi-axis and those along the negative semi-axis, 
are sinks. Thus, they have an inward inner 
orientation (Fig.8). Finally, we can decide that the 
inner orientation of the time intervals is the same as 
the orientation of the time axis. 
 

Fig.8: Time elements and their duals. 



After a more detailed analysis, however, it is 
clear that building a cell complex in time makes no 
sense in itself. In fact, in physics time has not 
importance in itself. It is just a variable, useful for 
describing how a physical phenomenon evolves. 
Now, since any physical phenomenon occurs in 
space, it follows that the time axis must always be 
related to one or more axes in space. The perception 
itself of the time is linked to bodies. Therefore, a 
cell complex in time must be two-dimensional, at 
least. In this paper, we propose to add a time axis to 
a three-dimensional cell complex where the cell of 
maximum dimension has been originated by a 
trivector  u v w . This gives rise to a four-
dimensional space/time cell complex, whose cell of 
maximum dimension is a tesseract. 

In multilinear algebra, a tesseract is a further 
element of the (graded) exterior algebra on a vector 
space. It is the four-dimensional analog of the cube, 
in the sense that it is to the cube as the cube is to the 
square. Each edge of a tesseract is of the same 
length and there are three cubes folded together 
around every edge (Fig.9). Just as the surface of the 
cube consists of six square faces, the hypersurface 
of the tesseract consists of eight cubical cells. 

Note that the elements of a CM space/time 4-
vector (a tesseract) are of different nature, since 
some -cellsp  are associated with a variation of the 

space variables, some other -cellsp  are associated 
with a variation of the time variables, and some 
other -cellsp  are associated with a variation of both 
the space and time variables. In particular, the points 
are associated with a variation of both the space and 
time variables. Therefore, we can say that there 
exists just one kind of points. As far as the others 

-cellsp  are concerned, on the contrary, we can 
define two different kinds of cells for each 

1,2,3p  . We will denote 
 1-cells of the kind “space”: the 1-cells that 

connect points associated with the same time 
instant, that is, the edges of the trivector 
 u v w  at a given instant (Fig.9); 

 1-cells of the kind “time”: the 1-cells that 
connect points associated with two adjacent 
time instants, that is, the time intervals (Fig.9); 

 2-cells of the kind “space”: the 2-cells that 
connect edges associated with the same time 
instant, that is, the faces of the trivector 
 u v w  at a given instant (Fig.10); 

 2-cells of the kind “space/time”: the 2-cells that 
connect edges associated with two adjacent time 
instants. The area of one of these faces is given 
by the product between a time interval and an 
edge of the trivector  u v w  (Fig.10); 

 3-cells of the kind “space”: the 3-cells that 
connect faces associated with the same time 
instant, that is, the volume of the trivector 
 u v w  at a given instant (Fig.11); 

 3-cells of the kind “space/time”: the 3-cells that 
are enclosed within faces associated with two 
adjacent time instants. The volume of one of 
these 3-cells is given by the product between a 
time interval and two edges of the trivector 
 u v w  (Fig.11). 

 

Fig.9: Different kinds of 1-cells in a space/time 
tesseract. 

 

Fig.10: Different kinds of 2-cells in a space/time 
tesseract. 

 

Fig.11: Different kinds of 3-cells in a space/time 
tesseract. 



In order to comply with the natural time 
sequence, from previous time instants to subsequent 
time instants, we will associate the elements of the 
left cube with the previous instant and the elements 
of the right cube with the subsequent instant. 
Consequently, the eight edges connecting the left to 
the right cube turn out to have an inner orientation 
from left to right, that is, the same orientation of the 
time axis (Fig.12). Moreover, since the same point 
of a four-dimensional space denotes both a point in 
space and a point in time (a time instant), it follows 
that the time instants have an inward inner 
orientation, that is, they are sinks. 
 

Fig.12: The CM tesseract: inner orientations on the 
3-cells of the kind space and the 1-cells of the kind 

time. 
 
When we associate the global space and time 
variables with the oriented elements of a 4-vector, 
we obtain the algebraic version of a four-
dimensional Minkowski continuum, called 
spacetime, whose metric treats the time dimension 
differently from the three spatial dimensions. 
Spacetime is thus not a Euclidean space. 
 
 
4.2 The Mathematical Structure of the CM 
A further criterion for classifying the physical 
variables is based on the role they play in a theory. 
According to this second criterion, all physical 
variables belong to one of the following three 
classes: 
 Configuration variables, describing the field 

configuration; 
 Source variables, describing the field sources; 
 Energetic variables, resulting from the 

multiplication of a configuration variable by a 
source variable. 

The equations used to relate the configuration 
variables of the same physical theory to each other 
and the source variables of the same physical theory 
to each other are known as topological equations. 

We have seen that, by providing the elements of 
a vector space with an inner orientation, the 
elements of the dual vector space turn out to be 
automatically provided with an outer orientation, as 
a consequence of the Riesz representation theorem. 
Now, due to the geometrical interpretation of the 
elements of the vector spaces, given by the 
geometric algebra, we can associate the elements of 
the two vector spaces with the geometrical elements 
of two cell complexes, where the elements of the 
second cell complex are the orthogonal 
complements of the corresponding elements in the 
first cell complex. Due to this association, by 
providing the elements of the first cell complex with 
an inner (or an outer) orientation, we induce an 
outer (or an inner) orientation on the second cell 
complex. Moreover, since the source variables 
requires an outer orientation, a proper description of 
a given physical phenomenon requires to use two 
cell complexes in relation of duality, not just one, as 
usually was done in computational physics before 
the introduction of the CM. In fact, it is true that the 
inner orientation of the elements of a vector space 
also induces an outer orientation on the elements of 
the same vector space and this may allow us to think 
that a single cell complex would be sufficient. 
Nevertheless, the association between the two 
orientations of the same cell complex is not 
automatic. There are always two possible criteria for 
establishing the correspondence between the two 
orientations, which depend on the orientation of the 
embedding space. Conversely, the relationship 
between inner (or outer) orientation of a cell 
complex and outer (or inner) orientation of its dual 
cell complex is derived from the Riesz 
representation theorem and does not depend on the 
orientation of the embedding space. Therefore, 
choosing to use two cell complexes, the one the dual 
of the other, instead of one single cell complex, is 
motivated by the need to provide a description of 
vector spaces that is independent of the orientation 
of the embedding space. 

We will call the first complexes in space and 
time the primal cell complexes, or primal 
complexes, and the second complexes in space and 
time the dual cell complexes, or dual complexes. 

The cell complexes are generalizations of the 
oriented graphs. Therefore, all the properties of the 
dual graphs naturally extend to the dual cell 
complexes. In particular, the dual graphs depend on 
a particular embedding. Since even the orthogonal 
complements (that is, the isomorphic dual vectors) 
and the outer orientation depend on the embedding, 
we will associate the outer orientation with the dual 



cell complex and will retain the inner orientation for 
the primal cell complex. 

The most natural way for building the two cell 
complexes is starting from a primal cell complex 
made of simplices and providing this first cell 
complex with an arbitrary inner orientation. The set 
of the dual elements can then be chosen as any 
arbitrary set of staggered elements whose outer 
orientations provide the (known) inner orientations 
of the primal -cellsp . In this sense, we can say that 

the outer orientations of the dual -cellsp  are 
induced by the inner orientations of the primal 

-cellsp . 
By associating the configuration variables with 

the primal -cellsp , the set of topological equations 
between global configuration variables defines a 
geometric algebra on the space of global 
configuration variables, provided with a geometric 
product. The operators of these topological 
equations are generated by the outer product of the 
geometric algebra, which is equal to the exterior 
product of the enclosed exterior algebra. The dual 
algebra of the enclosed exterior algebra is the space 
of global source variables, associated with the dual 

-cellsp , and is provided with a dual product that is 
compatible with the exterior product of the exterior 
algebra. The topological equations between global 
source variables arise from the adjoint operators of 
the primal operators. Finally, the pairing between 
the exterior algebra and its dual gives rise to the 
energetic variables, by the interior product. Since 
the reversible constitutive relations may be written 
in terms of energetic variables, because energy is 
the potential of the reversible constitutive relations, 
the reversible constitutive relations realize the 
pairing between the exterior algebra and its dual. 

 
 

4 Conclusion 
The configuration and the source variables used by 
the Cell Method have two different orientations, 
inner rather than outer orientation. This, together 
with the need to provide a description of vector 
spaces that is independent of the orientation of the 
embedding space, require to use two different cell 
complexes, whose geometrical elements stand by 
each other in relation of duality. The two cell 
complexes are called the primal and the dual cell 
complex. The elements of the first cell complex in 
space and first cell complex in time are associated 
with the variables endowed with an inner 
orientation, while the elements of the second cell 
complex in space and second cell complex in time 
are associated with the variables endowed with an 

outer orientation. As a consequence, the source 
variables are associated with the elements of the 
dual complex, and the configuration variables are 
associated with the elements of the primal complex. 

In this paper we have shown how the 
configuration variables with their topological 
equations, on the one hand, and the source variables 
with their topological equations, on the other hand, 
define two vector spaces that are a bialgebra and its 
dual algebra. The operators of these topological 
equations are generated by the outer product of the 
geometric algebra, for the primal vector space, and 
by the dual product of the dual algebra, for the dual 
vector space. The topological equations in the 
primal cell complex are coboundary processes on 
even exterior discrete -formsp , while the 
topological equations in the dual cell complex are 
coboundary processes on odd exterior discrete 

-formsp . Being expressed by coboundary processes 
in two different vector spaces, compatibility and 
equilibrium can be enforced at the same time, with 
compatibility enforced on the primal cell complex 
and equilibrium enforced on the dual cell complex. 
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