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SOMMARIO Il lavoro presenta un metodo per l’analisi delle vibrazioni libere di travi di 
Timoshenko soggette a sollecitazione flesso-torsionale in presenza di più fessure. Il metodo si 
basa sull’uso congiunto della matrice di rigidezza dinamica e della “line-spring” per la 
modellazione della sezione fessurata. Viene proposto uno studio parametrico sulla risposta modale 
al variare della posizione e della profondità delle fessure.  

  
ABSTRACT In this paper an exact solution methodology, based on the coupling of the dynamic 
stiffness matrix and the line-spring, enabling one to analyze the coupled bending-torsion free 
vibration of Timoshenko beams weakened by multiple non-propagating part-through surface 
cracks is presented. The changes introduced by the presence of three transverse open cracks, 
regarding the modal response, are investigated. A parametric study has been carried out for 
various crack parameters such as crack depth and location.  

  
1. PRINCIPLES OF THE METHOD 
A straight uniform beam element of length L and  T-cross-section  is shown in Fig. 1, with the 

mass axis and the elastic axis (i.e. the loci of the mass centre and the shear centre of the cross-
section) being separated by a distance xα. In the right-handed coordinate system of  Fig. 1, the 
elastic axis, which is assumed to coincide with the y-axis, is permitted flexural translation ( )h y,t  

in the z-direction and torsional rotation ( )y,tψ  about the y-axis, where y and t denote distance 
from the origin and time, respectively. The governing partial differential equations of motion for 
the coupled bending-torsional free natural vibration of the Timoshenko beam are given by 
 
                                                     ( ) 0EI kAG h Iθ θ ρ θ′′ ′+ − − =                                                   (1) 

                                                    ( ) ( ) 0kAG h m h xαθ ψ′′ ′− − − =                                                  (2) 

                                                         0GJ I mx hα αψ ψ′′ − + =                                                         (3) 
 
where: E is the Young’s modulus, G is the shear modulus and ρ is the density of the material; EI, 
GJ and kAG are, respectively, the bending, torsional and shear rigidities of the beam; I is the 
second moment of area of the beam cross-section about the x-axis, k is the section shape factor, A 
is the cross-section area, m = ρA is the mass per unit length, Iα  is the polar mass moment of inertia 
per unit length about the y-axis (i.e. an axis through the shear centre), θ is the angle of rotation in 
radians of   the cross-section  due to  the bending alone (so that the total slope h′  equals the sum 
of  slope due  to bending and due to shear deformation) and primes and dots denote differentiation 
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Figure 1. Coordinate system for a coupled bending-torsional Timoshenko uncracked beam with T 
cross-section. 

 
with respect to position y and time t, respectively. Equations (1)-(3) together with appropriate end 
conditions completely define the coupled bending-torsional free vibration of a Timoshenko beam. 

If a sinusoidal variation of h , θ and ψ, with circular frequency ω, is assumed, then the 
amplitude of  h , θ and ψ are obtained in terms of a set of arbitrary constants. Next, the arbitrary 
constants are eliminated by imposing the prescribed end conditions for the beam displacements 

1 1 1H , ,Θ Ψ  and 2 2 2H , ,Θ Ψ  and forces S1, M1, T1 and S2, M2, T2. By extensive algebraic 
manipulation, the solution for the bending displacement ( )H ξ , bending rotation ( )Θ ξ  and 

torsional rotation ( )Ψ ξ  are obtained from the following equations:  
 
                   ( ) 1 2 3 4 5 6H ξ A coshα A senhα A cosβ A senβ A cosγ A senγξ ξ ξ ξ ξ ξ= + + + + +                 (4) 

                    ( ) 1 2 3 4 5 6ξ B sinhα B coshα B sinβ B cosβ B sinγ B cosγΘ ξ ξ ξ ξ ξ ξ= + + + + +                  (5) 

                   ( ) 1 2 3 4 5 6Ψ ξ C coshα C senhα C cosβ C senβ C cosγ C senγξ ξ ξ ξ ξ ξ= + + + + +                (6) 
 
where 1 6A A− , 1 6B B−  and 1 6C C−  are the three different sets of constants, y Lξ =  and , ,α β γ  
are constants reported in [1]. The expressions for the bending moment ( )M ξ , the transverse force 

( )S ξ  and the torque ( )T ξ  can be obtained from eqs. (4)-(6). 
The dynamic stiffness matrix which relates the amplitudes of the sinusoidally varying forces F 

to the corresponding displacement amplitudes U can be derived and represented in a compact form 
as  
 
                                                                       F = KU                                                                    (7) 
 
where K is the required stiffness matrix. 

 
2. CRACK MODELLING  
In order to study the behaviour of a cracked structure a suitable model of the cracked section is 

required. In the present study the transverse cracks have been considered as open. Hereinafter, the 
cracked sections are represented as an elastic hinge [2] with spring constants simulating flexional, 
shear and torsional deformations. Bending moment M, shearing force S and torsion T can be 
related to the bending rotation Θ , the deflection H and the torsional rotation Ψ  by the following 
relations: mmλ MΘ = , ss stH λ S λ T= + ,  tt tsλ T λ SΨ = + , where λmm, λss, λtt and λst= λts are 
compliance expressions for bending, shear and torsion, respectively, as a function of the stress 



 
 

intensity factors KI, KII, KIII for Mode I, II and III, respectively. By means of Castigliano's 
theorem, the stiffness matrix kf  for the cracked element may be derived. If multiple cracks are 
present in the T-beam, as considered in this paper, the structure is divided into substructures, the 
number of which depends on the number of cracks considered in the structure itself, characterized 
by dynamic stiffness matrices, on the left and on the right of the cracked section, plus one line-
spring element to model each cracked section. It should be noted that for the T cross-section 
considered in this paper, the estimate of the stress intensity factors is based on the simple method 
proposed in [3]. 

The global dynamic stiffness matrix for the whole structure can be assembled using the above  
dynamic stiffness matrices of all substructures and the line spring stiffness matrix, by applying the 
standard procedure of the finite element method.   

 
3. EIGENVALUES AND MODE SHAPES OF THE CRACKED BEAM 
Once the global dynamic stiffness matrix of the system is obtained, after introducing the 

boundary conditions at the ends of the beam, one finally obtains the frequency equation. The 
restrained global stiffness matrix is denoted by Kg

*(ω).  The natural frequencies are those values 
of ω for which  
 
                                                                  Kg

*(ω)Ag
*=0                                                                 (9) 

  
where Ag

* is the restrained vector of constants which allow us to define the modal shapes, namely 
the vector of the nodal displacement amplitudes. The necessary and sufficient condition for 
nonzero elements in the column vector Ag

* of  Eq. (9) is that ( )*∆ ω= gK  shall be zero, and the 

vanishing of ∆ determines the natural frequencies of the system. The roots of the non-linear 
equation were obtained by using the Matlab function “fzero”. Once the cracked frequencies are 
found, one can obtain the cracked mode shapes of the beam  using Eqs. (5)-(7). The above 
functions must also satisfy certain conditions at the cracked sections or at the ends of each  
substructures.  

 
4. NUMERICAL EXAMPLE 
The changes introduced by the presence of three cracks, regarding  the magnitude of natural 

frequencies of a structure as well as  its modal response, are investigated. A parametric study  of  
three transverse open cracks has been carried out for various crack parameters such as crack depth 
and crack location. As shown in Fig. 3, the simple beam contains three initial notches. By varying 
the sizes of these initial notches, various cracking behaviours are obtained. In the example,  
notches A and B are assigned the size of  a/h = 0.4 and a/h = 0.2, respectively. Notch C is enlarged 
from a/h = 0.2 to a/h = 0.4. Fig. 3 illustrates the first four bending modal shapes, as a function of 
the crack sizes. When notch C is enlarged from a/h = 0.2 to a/h = 0.4, the first three modal shapes 
tend to move toward right with the increasing of the size crack C and the first and the fourth 
modal shape are different between them depending on the size of the initial notches A and B. 

 There is no changes in the second and third modal shapes because the notch B is very close to 
the nodal point and the only important change is in the fourth mode. Thus, small changes in the 
sizes or positions of initial notches may completely alter the modal shapes, which makes it very 
difficult to predict the cracking behaviour in a real structure when multiple cracks are involved.   
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Figure 2. Geometry, Cartesian coordinate systems and all geometric details of the beam with three 
edge cracks and T-section. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  First four bending modal shapes. 
  

References 
 
[1] Banerjee JR, Williams FW, Coupled bending-torsional dynamic stiffness matrix for 

Timoshenko beam elements, Computers and Structures  42, 1992,  301-310.  
[2] Miyazaki N, Application of line-spring model to dynamic stress intensity factor analysis of 

pre-cracked bending specimen, Engineering Fracture Mechanics 38(4-5),1991, 321-326. 
[3] Ricci P, Viola E, Stress   intensity factors for cracked T-sections and dynamic behaviour for 

T-beams, Engineering Fracture Mechanics 73, 2006, 91-111.  
[4] Viola E, Ricci P, Aliabadi MH, Free vibration analysis of axially loaded cracked Timoshenko 

beam structures using an exact dynamic stiffness method, Journal of Sound Vibration 2006 
(submitted). 

 

L = 1m  xα = 0.0111 m 
h = 0.05 m Iα = 3.237 x 10-3 kgm 
b = 0.05 m EI = 41241.669 Nm2 
m = 7.02 kg/m GJ = 2368.421 Nm2 
d = 0.01 m  


