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Abstract: - Infinitesimal analysis has without doubt played a major role in the mathematical treatment 
of physics in the past, and will continue to do so in the future, but we must also be aware that several 
important aspects of the phenomenon being described, such as its geometrical and topological 
features, remain hidden, in using the differential formulation. This is a consequence not of performing 
the limit, in itself, but rather of the numerical technique used for finding the limit. In this paper, we 
analyze and compare the two most known techniques, the iterative technique and the application of 
the Cancelation Rule for limits. It is shown how the first technique, leading to the approximate 
solution of the algebraic formulation, preserves information on the trend of the function in the 
neighbourhood of the estimation point, while the second technique, leading to the exact solution of the 
differential formulation, does not. Under the topological point of view, this means that the algebraic 
formulation preserves information on the length scales associated with the solution, while the 
differential formulation does not. This new interpretation of the Cancelation Rule for limits is also 
discussed in the light of the findings of non-standard calculus, the modern application of 
infinitesimals, in the sense of non-standard analysis, to differential and integral calculus. 
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1 Introduction 
In this paper, we analyze the difference between the 
algebraic and the differential formulation from the 
mathematical point of view. Particular attention is 
devoted to the computation of limits, by 
highlighting how the numerical techniques used for 
performing limits may imply a loss of information.  

The main motivation for the most commonly 
used numerical technique in differential 
formulation, the Cancelation Rule for limits, is to 
avoid the iterative computation of limits, which is 
implicit in the definition itself of a limit (the    
definition of a limit). The reason for this is that 
iterations necessarily involve some degree of 
approximation, while the purpose of the Cancelation 
Rule for limits is to provide a direct exact solution. 
Nevertheless, this exact solution is only illusory, 
since we pay the direct computation of the 
Cancelation Rule for limits by losing information on 
the trend of the function in the neighbourhood of the 
estimation point. Conversely, by computing the 
limit iteratively, with the dimension of the 
neighbourhood that decreases at each iteration, 

leading also the error on the solution to decrease, we 
conserve information on the trend of the function in 
the neighbourhood of the estimation point. This 
second way to operate, where the dimension of the 
neighbourhood approaches zero but is never equal 
to zero, follows from the    definition of a limit 
directly and leads to the algebraic formulation. 

When the Cancelation Rule for limits is used for 
finding densities and rates, we also lose information 
on the space and time extent of the geometrical and 
temporal objects associated with the variables we 
are computing, obtaining point- and instant-wise 
variables. By using the algebraic formulation, on the 
contrary, we preserve both the length and the time 
scales. Consequently, the physical variables of the 
algebraic formulation maintain an association with 
the space and time multi-dimensional elements. 

The Cancelation Rule for limits acts on the actual 
solution of a physical problem as a projection 
operator. The consequence is that the algebraic 
formulations is to the differential formulation as the 
actual solution of a physical problem is to the 
projection of the actual solution on the tangent space 



of degree 0, where each physical phenomenon is 
described in terms of space elements of degree 0, 
the points, and time elements of degree 0, the time 
instants. In other words, the differential solution is 
the shadow of the algebraic solution in the tangent 
space of degree 0. 

We also discuss how using the algebraic 
formulation, instead of the differential formulation, 
is similar to performing non-standard calculus, the 
modern application of infinitesimals to differential 
and integral calculus, instead of standard calculus. 
In this sense, the derivative of a function can be 
viewed as the standard part, or the shadow, of the 
difference quotient. The extension of real numbers, 
which leads to non-standard calculus, is indeed an 
attempt to recover the loss of length scales. 
Specifically, the enrichment with a length scale has 
a regularization effect on the solution. 
 
 

2 A Discussion on How to Compute 
Derivatives 

The    definition of a limit is the formal 
mathematical definition of a limit. Let f  be a real-
valued function defined everywhere on an open 
interval containing the real number c  (except 
possibly at c ) and let L  be a real number. 
According to the    definition of a limit, the 
statement 

 lim
x c

f x L


 , (1) 

means that, for every real 0  , there exists a real 

0   such that, for all real x , if 0 x c    , then 

 f x L   . Symbolically: 

  
0 

0 :  0x x c f x L



  

 

        
 (2) 

The absolute value x c  in Eq. (2) means that 

x  is taken sufficiently close to c  from either side 
(but different from c ). The limit value of  f x  as 

x  approaches c  from the left, x c , is denoted 
as left-hand limit, and the limit value of  f x  as x  

approaches c  from the right, x c , is denoted as 
right-hand limit. Left-handed and right-handed 
limits are called one-sided limits. A limit exists only 
if the limit from the left and the limit from the right 
are equal. Consequently, the limit notion requires a 
smooth function. 

The derivative  f x  of a continuous function 

 f x  is defined as either of the two limits (if they 

exist): 

     
lim
s x

f s f x
f x

s x





 , (3) 

and 

     
0

lim
h

f x h f x
f x

h

 
  , 0h  . (4) 

The ratio in Eq. (4) is not a continuous function 
at 0h  , because it is not defined there. In fact, the 
limit (4) has the indeterminate form    0 0   

as 0h , since both the numerator and the 
denominator approach 0 as 0h . 

We can compute the limiting value (4) both in an 
approximated way, by reducing the error with 
subsequent iterations, as per the    definition of 
a limit, or in an exact way, by making use of the 
Cancellation Rule for limits. In the perspective of a 
computational analysis using the differential 
formulation, it is obvious that the choice falls on the 
exact, rather than the approximated, computation of 
limits. In effect, in doing so, one can obtain an exact 
solution of the physical phenomenon under 
consideration only in few elementary cases, with 
simple geometric shapes of the domain and under 
particular boundary conditions. Anyway, the most 
important aspect is not that the exact numerical 
solution is hardly ever attained in real cases, but 
rather, that the choice itself of the term “exact” for 
the limit promised by the Cancelation Rule is not 
entirely appropriate. Actually, in order to provide 
the solution of the limit directly, the Cancellation 
Rule for limits reduces the order of zero both in the 
numerator and the denominator by one. Under the 
numerical point of view, this reduction is made by 
cancelling a quantity with the order of a length, both 
in the numerator and in the denominator. Under the 
topological point of view, we could say that the 
reduction degrades the solution, in the sense that, 
being deprived of one length scale, the solution 
given by the Cancelation Rule provides us with a 
lower degree of detail in describing the physical 
phenomenon under consideration. Specifically, with 
the Cancelation Rule for limits, we can factor h  out 
of the numerator in Eq. (4): 

     
x x

f x h f x h g h


      , (5) 

and cancel this common factor in the numerator and 
denominator. Then, we can find the limit by 
evaluating the new expression at 0h  , that is, by 
plugging in 0 for h , because the new expression is 
continuous at 0h  : 

   
00

lim
hh

h g h
g h

h 


 , (6) 

where the result is a real number. 



The equality in Eq. (6), established by the 
Cancelation Rule, is undoubtedly numerically 
correct, in the sense that the results of the left- and 
right-hand-side expressions are actually numerically 
equal, but the way in which these results are 
achieved is radically different in the two cases. As a 
matter of fact, the limit on the left side is defined on 
the open interval of length h , while the function 

 g h  is evaluated for a given value of the variable, 

0h  . This difference, negligible from the purely 
numerical viewpoint, is instead essential from the 
topological viewpoint. In effect, it is so much 
essential that the opportunity of using an algebraic 
rather than a differential formulation could be 
discussed just on the basis of the equality between 
the left- and right-hand-side terms in Eq. (6). 
Actually, the    definition of a limit implies 
choosing an (open) interval, containing the point in 
which we want to estimate a function, with the aim 
of making the distance between the points in which 
we compute the function and the point in which we 
want to estimate the function as small as we want. 
In other words, the limit on the left side in Eq. (6) is 
strictly bonded to the idea of interval of a point and 
cannot be separated from it. The result of the limit is 
the value to which the function output appears to 
approach as the computation point approaches the 
estimation point. For evaluating this result, we must 
enough carefully choose the computation points, in 
order to derive the trend of the output to a specific 
degree of approximation. That is, the result we 
obtain by choosing increasingly close points is only 
an estimation of the actual result and the 
approximation of the estimation is as much better 
(the degree of approximation is as much low) as the 
computation point is close to the estimation point. In 
conclusion, the    definition of a limit also 
bounds the limit to the notions of approximation and 
degree of approximation, or accuracy. 

Completely different is the discussion on the 
right-hand-side function of Eq. (6). Actually, the 
new function  g h  is computed at a point, the point 

0h  , without any need of evaluating its trend on 
an interval. The consequence is that the result we 
obtain is exact (in a broad sense), and we do not 
need to prefix any desired accuracy for the result 
itself. This is very useful from the numerical point 
of view, but, from the topological point of view, we 
lose information on what happens approaching the 
evaluation point. It is the same type of information 
we lose in passing from the description of a 
phenomenon in a space to the description of the 
same phenomenon in the tangent space at the 
evaluation point. 

The idea underlying this paper is that the 
Cancellation Rule can actually be employed only in 
those cases where the specific phenomenon 
uniquely depends on what happens at the point 
under consideration. In effect, this happens in few 
physical problems, while, in most cases, the 
physical phenomenon under consideration also 
depends on what happens in a neighbourhood 
centred at the point. 

By extension of Eq. (6) to functions of more than 
one variable, studying the physical phenomenon as 
if it were a point-wise function means that we are 
using the right-hand side of Eq. (6), while studying 
the physical phenomenon as a function of all the 
points contained in a neighbourhood means that we 
are using the left-hand side, with h  approaching 
zero but never equal to zero. In the first case, we are 
facing a differential formulation, while, in the 
second case, we are facing an algebraic formulation. 

Operatively, we are using an algebraic 
formulation whenever we choose increasingly close 
points (to both the right and the left) of the 
estimation point, until the outputs remain constant to 
one decimal place beyond the desired accuracy for 
two or three calculations. How much the 
computation points must be close to the estimation 
point depends on how fast the result of the limit is 
approached as we approach the point in which the 
limit is estimated. Therefore, the dimension of the 
neighbourhood is fixed by the trend of the 
phenomenon around the point under consideration, 
or, in other words, the distance   for the evaluation 
of  f c  depends both on the error   and on 

 f c . The information we lose by using the 

Cancellation Rule lies just in the trend of the 
phenomenon, that is, in the curvature, since the 
curvature cannot be accounted for in passing from a 
space to its tangent space at the evaluation point. 

In the differential formulation, the notion of limit 
is used not only for defining derivatives, but also 
densities. In this second case, the denominator that 
tends to zero has the dimensions of a length raised 
to the power of 1, 2, or 3. The Cancelation Rule for 
limits can be employed also in this second case, by 
factorizing and cancelling length scales in 
dimension 1, 2, or 3, respectively. This leads to 
point-wise variables in any cases, the line, surface, 
and volume densities. Finally, the Cancelation Rule 
for limits is used also for finding rates, by 
factorizing and cancelling time scales in dimension 
1. This last time, the limit, which is a time 
derivative, provides an instant-wise variable. 

In conclusion, with reference to the space of the 
physical phenomena, the differential formulation 



provides the numerical solution in the tangent space 
of degree 0, where we can describe each physical 
phenomenon in terms of the space elements of 
degree 0, the points, and the time elements of degree 
0, the time instants. Conversely, the algebraic 
formulation allows us to take account of, we could 
say, the curvatures in space and time at a point, 
where a point of the space of the physical 
phenomena is a given physical phenomenon, in a 
given configuration, at a given time instant. 

 
 

3 A Comparison Between Algebraic 
Formulation and Non-Standard 
Analysis 

In the previous Section, we have argued that the 
solution given by the Cancelation Rule for limits is 
the projection of the actual solution from the multi-
dimensional space to the tangent space of degree 0. 
In fact, the cancelation of the common factors in 
numerator and denominator acts as a projection 
operator and the equality in Eq. (4) should more 
properly be substituted by a symbol of projection. 
Consequently, the solution of the differential 
formulation is the shadow of the actual solution in 
the tangent space of degree 0. On the contrary, the 
algebraic formulation, by avoiding the projection 
process, provides us with a higher degree solution, 
approximated in any case, which is more adherent to 
the physical nature of the phenomenon under 
consideration. 

By using the language of non-standard analysis, 
which is a rigorous formalization of calculations 
with infinitesimals, the infinite and infinitesimal 
quantities can be treated by the system of hyperreal 
numbers, or hyperreals, or nonstandard reals. 
Denoted by * , the hyperreal numbers are an 
extension of the real numbers,  , that contains 
numbers greater than anything of the form: 
1 1 ... 1   . (7) 

Such a number is infinite, and its reciprocal is 
infinitesimal. 

 

Fig.1: The bottom line represents the “thin” real 
continuum. The line at top represents the “thick” 

hyperreal continuum. The “infinitesimal 
microscope” is used to view an infinitesimal 

neighborhood of 0. 

Non-standard analysis deals primarily with the 
hyperreal line, which is an extension of the real line, 
containing infinitesimals, in addition to the reals 
(Fig. 1). In the hyperreal line every real number has 
a collection of numbers (called a monad, or halo) of 
hyperreals infinitely close to it. 

The standard part function is a function from the 
limited (finite) hyperreal to the reals. It associates 
with a finite hyperreal x , the unique standard real 
number 0x  which is infinitely close to it (Fig. 1): 

  0st x x . (8) 

As such, the standard part function is a 
mathematical implementation of the historical 
concept of adequality introduced by Pierre de 
Fermat. It can also be thought of as a mathematical 
implementation of Leibniz’s Transcendental Law of 
Homogeneity. 

The standard part function was first defined by 
Abraham Robinson as a key ingredient in defining 
the concepts of the calculus, such as the derivative 
and the integral, in non-standard analysis. 

The standard part of any infinitesimal is 0. Thus, 
if N  is an infinite hypernatural, then 1 N  is 
infinitesimal, and 

1
st 0

N
   
 

. (9) 

The standard part function allows the definition 
of the basic concepts of analysis, such as derivative 
and integral, in a direct fashion. The derivative of 
f  at a standard real number x  becomes 

     * *
st

f x x f x
f x

x

   
    

, (10) 

where x  is an infinitesimal, smaller than any 
standard positive real, yet greater than zero, and * f  

is the natural extension of f  to the hyperreals (*  is 
the transfer operator applied to f ). Similarly, the 
integral is defined as the standard part of a suitable 
infinite sum. 

In this approach,  f x  is the real number 

infinitely close to the hyperreal argument of st . For 
example, the non-standard computation of the 
derivative of the function   2f x x  provides 

     
2 2

st st 2 2
x x x

f x x x x
x

   
      

  
, (11) 

since 
2 2x x x   , (12) 
where the symbol “  ” is used for indicating the 
relation “is infinitely close to”. In order to make 

st

0

0

12 1 2

0 



 f x  a real-valued function, we must dispense 

with the final term, x , which is the error term. In 
the standard approach using only real numbers, that 
is done by taking the limit as x  tends to zero. In 
the non-standard approach using hyperreal numbers, 
the quantity x  is taken to be an infinitesimal, a 
nonzero number that is closer to 0 than to any 
nonzero real, which is discarded by the standard part 
function. 

The notion of limit can easily be recaptured in 
terms of the standard part function, st , namely: 

 lim
x c

f x L


 , (13) 

if and only if, whenever the difference x c  is 

infinitesimal, the difference  f x L  is 

infinitesimal, as well. In formulas 

    st stx c f x L   . (14) 

The standard part of x  is sometimes referred to 
as its shadow. Therefore, the derivative of  f x  is 

the shadow of the difference quotient. 
We can thus conclude that the standard part 

function is a form of projection from hyperreals to 
reals. As a consequence, using the algebraic 
formulation is somehow similar to performing non-
standard calculus, the modern application of 
infinitesimals, in the sense of non-standard analysis, 
to differential and integral calculus. In effect, the 
extension of the real numbers,  , is equivalent to 
providing the space of reals with a supplementary 
structure of infinitesimal lengths. This configures 
the hyperreal number system as an infinitesimal-
enriched continuum, and the algebraic approach can 
be viewed as the algebraic version of non-standard 
calculus. 

The great advantage of the infinitesimal-
enrichment is that of successfully incorporating a 
large part of the technical difficulties at the 
foundational level of non-standard calculus. 
Similarly, in the algebraic formulation many 
numerical problems, mainly instability or 
convergence problems, are avoided by the presence 
of a supplementary structure of (finite) lengths both 
in  , 2 , and 3 . 

 
 

4 The Truly Algebraic Method: the 
Cell Method 

One of the main consequences of using the left- 
rather than the right-hand side in Eq. (6) is that the 
nature of physical variables is different in the 
algebraic rather than the differential formulation, 
global in the first case and local in the second case. 

Broadly speaking, the global variables are variables 
that are neither densities nor rates of other variables. 
In particular, we will call: 
 Global variable in space, or space global 

variable, a variable that is not the line, surface, 
or volume density of another variable. 

 Global variable in time, or time global variable, 
a variable that is not the rate or time derivative 
of another variable. 

The field variables are obtained from the global 
variables as densities of space global variables and 
rates of time global variables. Due to their point-
wise nature, they are local variables. 

In the differential formulation, some variables 
arise directly as functions of points and time 
instants, while the remaining variables are reduced 
to points and time instants functions by performing 
densities and rates and making use of the 
Cancelation Rule for limits. Thus, the physical 
variables of the differential formulation are point-
wise and/or instant-wise field functions. 

Conversely, by avoiding factorization and 
cancelation, the algebraic formulation uses global 
variables. Moreover, since, in doing so, the 
algebraic formulation preserves the length and time 
scales of the global physical variables, the physical 
variables, in spatial description, turn out to be 
naturally associated with one of the four space 
elements (point, line, surface, and volume, which 
are denoted with their initial capital letters in bold, 
P , L , S , and V , respectively, as shown in Fig. 2) 
and/or with one of the two time elements (time 
instant and time interval, which are denoted with I  
and T , respectively, as shown in Fig. 3). 

 

Fig.2: The four space elements and their notations. 

 

Fig.3: The two time elements and their notations. 
 
By using global variables, it is possible to obtain 

an algebraic formulation directly and, what is most 
important, the global variables involved in obtaining 
the formulation do not have to be differentiable 
functions. This observation has inspired the 
philosophy of the Cell Method (CM), the truly and 



unique algebraic method, at the moment. The ability 
of the CM to solve some of the problems affected by 
spurious solutions in the differential formulation 
lies, in part, just on the association between 
variables and space and/or time elements. 

 
 

5 Conclusions 
The Cancelation Rule for limits, extensively used in 
the differential formulation, acts on the actual 
solution of a physical problem as a projection 
operator that degrades the solution itself. The Cell 
Method (CM) avoids to use the Cancelation Rule for 
limits and adopts a formulation that has many 
contact points with the iterative technique for 
performing the limit process. This allows the CM to 
associate any physical variable with the geometrical 
and topological features, usually neglected by the 
differential formulation. The governing equations 
are derived in algebraic manner directly, by means 
of the global variables. 

The direct algebraic approach can be viewed as 
the algebraic version of non-standard calculus. In 
fact, the extension of the real numbers with the 
hyperreal numbers, which is on the basis of non-
standard analysis, is equivalent to providing the 
space of reals with a supplementary structure of 
infinitesimal lengths. In other words, it is an attempt 
to recover the loss of length scales due to the use of 
the Cancelation Rule for limits, in differential 
formulation. For the same reasons, the CM can be 
viewed as the numerical algebraic version of those 
numerical methods that incorporate some length 
scales in their formulations. This incorporation is 
usually done, explicitly or implicitly, in order to 
avoid numerical instabilities. Since the CM does not 
need to recover the length scales, because the metric 
notions are preserved at each level of the direct 
algebraic formulation, the CM is a powerful 
numerical instrument that can be used to avoid some 
typical spurious solutions of the differential 
formulation. 
 
 
References: 
[1] F. Ayres, E. Mandelson, Calculus (Schaum’s 

Outlines Series), 2009, 5th ed. Mc Graw Hill. 
[2] R. Bott, L.W. Tu, Differential Forms in 

Algebraic Topology, 1982, Berlin, New York, 
Springer-Verlag. 

[3] F.H. Jr. Branin, The Algebraic Topological 
Basis for Network Analogies and the Vector 
Calculus, Symposium on Generalized 
Networks, 1966, pp. 435–487. 

[4] W.L. Burke, Applied Differential Geometry, 
1985, Cambridge, Cambridge University Press. 

[5] E. Ferretti, A local strictly nondecreasing 
material law for modeling softening and size-
effect: A discrete approach, CMES - Computer 
Modeling in Engineering and Sciences, Vol.9, 
No.1, 2005, pp. 19-48. 

[6] E. Ferretti, On nonlocality and Locality: 
Differential and Discrete Formulations, ICF11 
- 11th International Conference on Fracture, 
Vol.3, 2005, pp. 1728-1733. 

[7] E. Ferretti, Cell Method Analysis of Crack 
Propagation in Tensioned Concrete Plates, 
CMES - Computer Modeling in Engineering 
and Sciences, Vol.53, No.3, 2009, pp. 253-281. 

[8] E. Ferretti, The Cell Method: An Enriched 
Description of Physics Starting from the 
Algebraic Formulation, Computers, Materials 
and Continua, Vol.36, No.1, 2013, pp. 49-71. 

[9] E. Ferretti, A Cell Method Stress Analysis in 
Thin Floor Tiles Subjected to Temperature 
Variation, Computers, Materials and Continua, 
Vol.36, No.3, 2013, pp. 293-322. 

[10] E. Ferretti, The Cell Method as a Case of 
Bialgebra, ASM ‘14 - 8th International 
Conference on Applied Mathematics, 
Simulation, Modelling, 2014, pp. 322-331. 

[11] E. Ferretti, The Assembly Process for 
Enforcing Equilibrium and Compatibility with 
the CM: a Coboundary Process, CMES - 
Computer Modeling in Engineering and 
Sciences, 2014, in press. 

[12] E. Ferretti, The Mathematical Foundations of 
the Cell Method, Computational Mechanics, 
submitted. 

[13] E. Ferretti, E. Casadio, A. Di Leo, Masonry 
Walls under Shear Test: A CM Modelling, 
CMES - Computer Modeling in Engineering 
and Sciences, Vol.30, No.3, 2008, pp. 163-189. 

[14] E. Viola, F. Tornabene, E. Ferretti, N. Fantuzzi, 
Soft Core plane State Structures under Static 
Loads using GDQFEM and Cell Method, 
CMES - Computer Modeling in Engineering 
and Sciences, Vol.94, No.4, 2013, pp. 301-329. 

[15] E. Viola, F. Tornabene, E. Ferretti, N. Fantuzzi, 
GDQFEM Numerical Simulations of 
Continuous Media with Cracks and 
Discontinuities, CMES - Computer Modeling in 
Engineering and Sciences, Vol.94, No.4, 2013, 
pp. 331-369. 

[16] E. Viola, F. Tornabene, E. Ferretti, N. Fantuzzi, 
On Static Analysis of Composite Plane State 
Structures via GDQFEM and Cell Method, 
CMES - Computer Modeling in Engineering 
and Sciences, Vol.94, No.5, 2013, pp. 421-458. 


