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Abstract. The paper shows how to give a direct discrete formulation of
the wave equation starting directly from physical laws, i.e. without passing
through differential formulation. Using global variables instead of scalar
and vector field functions, a close link between global variables and spatial
and temporal elements immediately appears. A preliminary classification
of physical variables into three classes, configuration, source and energy
variables and the use of two cell complexes, one dual of the other, gives
an unambiguous association of global variables to the spatial and temporal
elements of the two complexes. Thus one arrives at a discrete formulation
of d’Alembert equation on a unstructured mesh.

1 Introduction

The laws of physical phenomena are usually written in the form of differential
equations. This is the case of the equations of d’Alembert, Helmholtz, Fourier,
Navier, Navier-Stokes, Maxwell, etc.

In the past decades, with advent of computers and with an increasing de-
mand for a numerical solution of field problems the need arises to convert dif-
ferential equations into algebraic equations. To perform this conversion many
discretization methods have been devised such as Finite Difference, Finite El-
ements, Finite Volumes, Weight Residual Methods, etc. Even when we use an
integral formulation, as in the Finite Volume Method or in Boundary Elements
Method, the standard practice is to use integrals of the field functions, the latter
being essential ingredients of differential formulation.

Faced with this practice we pose the question: is it possible to avoid any
discretization process of differential equation and to write directly physical laws
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in a discrete, i.e. algebraic, form? In other words: is it possible to avoid
completely a differential formulation?

The demand for a discrete formulation, even if motivated by computational
purposes, can be raised from a purely theoretical side. In order to see why, we
must revise our custom of considering the solution of a differential equation as
the “exact” solution. What does “exact” means? Let us take a more realistic
approach to the notion of solution. We are well aware that in order to solve
something we must input some data: are these data “exact”? The answer is:
no. Every measurement is affected, on principle, by a tolerance. Every mea-
suring device belongs to a given class of precision and an infinite precision is
neither requested nor attainable. Since the data have a tolerance it follows that
also the solution has a tolerance. The results of a calculation need not to be
compared with the “exact” solution of a differential equation but with experi-
mental measurements. Notwithstanding that differential equations promise an
“exact” solution that is almost never attained! Only in few cases dealing with
linear equations with very simple slab geometry, very simple boundary condi-
tions, with a single material medium that is homogeneous and isotropic can a
solution in closed form be obtained.

A more realistic viewpoint, that is proper to physicists and engineers, is
the one based on the acceptance that the solution of a physical problem must
have a prescribed tolerance. Numerical analysis is based on the notion of error ,
measuring apparatus are based on the notion of precision, the data have a given
tolerance: why are we so firmly anchored to the notion of “exact” solution? We
see that in order to open the way to a discrete formulation of physical laws the
key point is the abandoning of the notion of exactness in favour of the notion
of prescribed tolerance.

In this paper we show that a direct discrete formulation of acoustic field is
possible, it is easy, it is consistent with experiments and it can be immediately
used for numerical computation.

In this formulation the classical procedure of writing physical laws in differ-
ential form is inverted. Instead, we start from the direct discrete formalism and
deduce the differential formalism whenever it is opportune to do so.

To avoid any possible misunderstanding we point out that what we propose
in this paper is not a refusal of differential formulation of the laws of physics but
an alternative to it. We shall then be free to choose one or the other description,
as best suits our purposes.

To give a discrete formulation we start with a revision of physical variables:
they are directly responsible for the mathematical description of physics.

Differential formulation requires functions of point in order to perform deriva-
tives. Apart from few physical variables that are directly expressed as point
functions, such as temperature, electric potential, scalar magnetic potential,
displacement, most field functions arise from global variables giving the density.
Hence pressure is the ratio of a normal force to an area; mass density is the
ratio of mass to a volume; strain is the ratio of elongation of a line to its initial
length, etc.

The forming of densities is a two step process: the first step is just the ratio
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of the global quantity referred to a spatial element endowed with extension (line,
surface, volume) to the corresponding extension. This produces mean densities.
The second step is the limit process of mean densities in order to obtain point
functions, i.e. field functions.

A flow is referred to a surface; velocity circulation is referred to a line;
momentum content is referred to a volume. We shall call these global variables .
The commonest name is integral variables: we avoid it because it refers to
an integration process performed on field functions, be they scalars, vectors,
tensors.

It is remarkable that we measure mainly global variables: the mean densities
are evaluated and easily introduced in digital measuring devices.

One must distinguish between global variables in space and global variables
in time. A global variable in space is one that is not a density; a global variable
in time is one that is not a rate.

At this point it seems clear that a discrete formulation of field laws must be
based on global variables. The forming of mean densities will be requested by the
constitutive equations, as we shall show later. The second step of performing
the limit will never be performed.

While field variables are functions of points and instants, global variables
are domain functions . For this reason we put the spatial and temporal domains
between square brackets.

To justify the use of global variables we list here their main advantages:

1. Global variables naturally refer to spatial and temporal elements such as
points (P), lines (L), surfaces (S), volumes (V), time instants (I) and
intervals (T), as we shall show. This is implicit when we consider that an
integral variable is expressed by an integral over a spatial and temporal
region. The process of performing mean densities and the limit process
to arrive at field functions is required only by differential formulation. By
doing so we hide the association of global variables with extended spatial
and temporal elements: this association must be reconstructed later by
the discretization process.

2. Since the goal of any numerical simulation is agreement with experimental
measurements, and since we measure overall global variables, the use of
global variables permits us to maintain a close link between simulation
and measurements.

In particular boundary fluxes can be measured and directly inserted in
a discrete formulation. Contrary to this in differential formulation the
boundary fluxes must be converted into the normal derivative of the field
potentials and a constitutive equation must be involved in order to write
Neumann conditions.

3. Balance and circuital laws can be expressed exactly in a global form. These
laws are valid for whatever closed surface and whatever closed line, even
if they enclose different materials. They are valid for homogeneous or
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inhomogenous materials, for isotropic or anisotropic ones. This implies
the absence of jump conditions . It is worthwile remembering that in dif-
ferential formulation jump conditions are obtained by using small closed
surfaces and closed lines across the separation surface of two materials.

4. Using global variables we avoid infinities. The latter arise when we per-
form a limit of mean densities, a process requires by differential formula-
tion to obtain field functions. The limit process is excluded in a discrete
formulation where only mean densities are involved.

5. While differential formulation requires unphysical derivability conditions,
using global variables we do not need any derivability conditions.

6. Constitutive laws are experimented and formulated for regions of uniform
field and homogeneous media: this is the case of Fourier’s law for heat
transfer, of Ohm’s law for electrical conduction, of Hooke’s law for elastic
material. It follows that if we do the approximation that inside every cell
the field is uniform and the material is homogeneous we can implement
constitutive laws directly, i.e. without performing the limit process. Once
more we have a close link between mathematical modelling and physical
facts. Contrary to balance and circuital laws, constitutive equations in
a non uniform field region are approximate: this implies that a direct
discrete formulation is approximate. We shall take the assumption that the
simplexes are small enough to consider the field uniform and the material
homogenous inside every simplex.

These simple remarks are the premises for a direct discrete formulation of
physical laws. In order to carry out such a formulation it is necessary to subdi-
vide the working spatial and temporal region in cells, by means of a cell complex .
These cells can have, a priori, any shape and any dimension. While squares and
cubes can be easily drawn, triangles and tetrahedra are preferable for reasons
that will be clearer later. We shall consider only cells in the form of triangles
and tetrahedra, i.e. simplicial complexes .

2 Direct Dicrete Formulation: the Premises

We call “direct discrete formulation” of physical laws one whose starting point
are physical measurements and experimental laws . Since physical laws are quan-
titative relations between physical variables, we start with a reexamination of
the physical variables themselves. This leads us to highlight the following points:

1. a discrete formulation must use global variables instead of field functions ;
2. global variables are associated with space elements, i.e. points, lines,

surfaces, volumes and with time elements instants and intervals ;
3. in this association a pivotal role is played by the two kinds of orientations

of spatial and temporal elements, i.e. the notions of inner and outer
orientation;
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4. physical variables can be classified in three classes according to the role
that they play in the physical theory: configuration, source and energy
variables;

5. configuration variables are associated with space elements endowed with
inner orientation while source variables are associated with space elements
endowed with outer orientation;

6. this association suggests a cell complex and its dual should be introduced
instead of a coordinate system. The cells of the various degrees of the
primal complex will be endowed with an inner orientation and those of
the dual complex are automatically endowed with an outer orientation.

2.1 Configuration, Source and Energy Variables

The variables of acoustics, as well as those of all classical physical theories, can
be divided in three classes.

• Geometric and kinematic variables that describe the configuration of the
field and accordingly will be called configuration variables;

• Static and dynamic variables that describe the sources of the field and
accordingly will be called source variables;

• Energy variables that are obtained doing the product of a configuration
for a source variable.

We list here the main physical variables of continuum mechanics:
Configuration variables: displacement s, strain tensor ε, velocity u, strain

rate tensor D, kinetic potential ϕ, vorticity ω, vortex flux W, velocity circula-
tion Γ, etc.

Source variables: force F, impulse I, momentum content Pc, momentum
flow Pf , momentum density p, mass content mc, mass flow mf , mass current
Q, mass density ρ, mass current density q, stress tensor σ, pressure p, stream
function ψ, etc.

Energy variables: work W , heat Q , potential energy V , kinetic energy T ,
hentalpy H, entropy S, etc.

This classification is useful in teaching as well as in research. One conse-
quence is that it enables us to define the constitutive or material equations:
these are the link between the configuration and the source variables of every
physical theory and contain material and system parameters .

2.2 Inner and Outer Orientation

In the association of global variables to a spatial and temporal element there
is another essential point that must be considered: the notion of orientation of
the element.
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Inner orientation. We shall refer to the left part of Fig.(1). An inner ori-
entation of a line means a direction along the line; an inner orientation of a
surface means a direction of its bounding line; an inner orientation of a volume
means an inner orientation of its bounding surface. An inner orientation of a
point means that the point is conceived as a source or as a sink.

Outer orientation. With reference to the right part of Fig.(1), an outer
orientation of a volume means a direction across its boundary, this is the usual
orientation of inwards or outward normals. An outer orientation of a surface
means a direction across the surface usually denoted by a normal unit vector.
An outer orientation of a line means a direction of rotation around the line. An
outer orientation of a point means that the lines that have an extremum in the
point are endowed with outer orientation. Contrary to inner orientation, outer
orientation depends on the dimension of the space in which the cell complex
is embedded. Thus the outer orientation of a line segment embedded in a
three-dimensional space is a sense of rotation around the segment; in a two-
dimensional space it is an arrow that crosses the line and when the segment
is embedded in a one-dimensional space, it is represented by two arrows as if
the segment were compressed or extended. This is typical orientation used in
elasticity to denote compression or traction of a bar.

2.3 Cell Complexes

Dealing with differential formulation it is quite natural to use coordinate sys-
tems. On the contrary a discrete formulation deals with global variables that are
naturally associated with spatial and temporal elements, i.e. volumes, surfaces,
lines, points, time intervals and instants.

Following the practice of algebraic topology, a branch of topology that uses
cell complexes, the vertices, edges, faces and cells are considered as “cells” of
dimension zero, one, two and three respectively. In short they are denoted as
0-cells, 1-cells, 2-cells and 3-cells. Thus a cell complex is not conceived as a set
of small volumes but as a collection of cells of various dimensions.

Given a cell complex, we shall call primal , considering a point inside every 3-
cell, say its centroid, one can construct another cell complex, called dual, taking
these points as vertices. If the primal complex is formed of squares (in 2D) or of
cubes (in 3D) also the dual one is formed of squares or cubes. The dual complex
is simply staggered with respect to the primal one as shown in Fig.(3a).

In a two dimensional space the primal complex can be made of triangles. In
this case considering the circumcenters of the triangles as vertices of the dual
complex and connecting the circumcenters of two adjacent triangles one obtains
a dual complex. To every 1-cell of the primal complex there corresponds a 2-cell
of the dual and the two are orthogonal, as in Fig. (3b). The same is true for
a three-dimensional complex made of tetrahedra. In this case one can consider
the spherocenters: connecting the spherocenters of two adjacent tetrahedra one
obtains a dual complex. In this case to every 1-cell of the primal there corre-
sponds a 2-cell of the dual; to every 2-cell of the primal there corresponds a
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Inner orientation of a line: it
is the basic notion used to give a 
meaning to the orientations of 
all other geometrical elements.

Inner orientation of a surface: it
is a compatible orientation of its 
edges, i.e. a direction to go 
along its boundary.

Inner orientation of a volume:
it is a compatible orientation of 
its faces. It is equivalent to the 
screw rule.

Outer orientation of a volume:

outer orientation

the choice of outward or inward 
normals. A positive orientation
has outwards normals.

Outer orientation of a surface:
it is the inner orientation 
of the line crossing the surface.


Outer orientation of a line:
it is  the inner orientation
of a surface crossing the line.


Outer orientation of a point: 
it is the inner orientation  
of the volume 
containing the point.

Inner orientation of a point:

inner orientation 

a positive point is oriented as
a sink.  


P

L

S

V
~P

~L

~S

~V

Figure 1: The two notions of inner and outer orientations in three-dimensional
space.
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acoustic  field in fluids

acoustic fleld in solids
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Figure 2: Global physical variables of acoustics and the geometric elements of
the primal and dual cell complex with which they are associated.

1-cell of the dual. Moreover, to every 0-cell of the primal it corresponds a 3-cell
of the dual. In short: if n denotes the dimension of the space, (n = 1, 2, 3) with
every p-cell of the primal it corresponds an (n−p)-cell of the dual and viceversa.

The choice of a point inside every n-cell, to be considered as 0-cell of the
dual, is arbitrary and can be dictated by computational convenience.
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The way of connecting the centers of two adjacent cells is also arbitrary.
Hence when one consider the centroids of the n-cells one can connect the adja-
cent ones by a straigth line or via the centroid of the face, as shown in Fig.(3c).
The last choice is the one considered in algebraic topology and is called barycen-
tric subdivision. It has many computational facilities. Doing so the dual of the
1-cell (hi) is the broken line shown as heavy line in Fig.(3c). With reference to

a)  cartesian dual b)  Voronoi dual c)  barycentric dual

h hh

k k k

Figure 3: Primal and dual cell complexes.

Fig.(4) one can see that with every 0-cell of the primal complex it corresponds
a 3-cell of the dual one. This duality is shown in Fig.(1) in which the elements
of the right column are in reverse order to the ones of the left column. All these
considerations do not depend on the shape and the dimensions of the cells of the
complex. For numerical analysis, however triangular cells in two dimensional
spaces and tetrahedral cells in three dimensions are convenient. These simplicial
complexes permit a better matching with curved boundaries, can be refined in
the regions of strong variation of gradients and fit well with linear interpolation.
Furthermore, they are now considered the “de-facto” standard in the numerical
analysis and optimization of complex engineering problems. We prefer to use
the term “cell-complex” rather than “mesh” because, as we shall show, all space
elements forming it are involved in the description.

Given a cell complex we can assign to all its elements an inner orientation.
This complex will be called primal . If we now consider a dual complex, say
considering the centroids of the cells as vertices of the dual, automatically all
elements of the dual are endowed with outer orientation. This is a remarkable
geometrical property discovered by Veblen and Whitehead [30, p.55] and intro-
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duced in physics by Schouten [23] and Van Dantzig [29]. The notation

x
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Figure 4: A cell complex in space and its elements. Heavy lines denote the dual
complex.

tn¡ 1 tn tn+1

tn+1~~tn

¿n n+1¿
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t

Figure 5: A cell complex in time and its elements. Heavy lines refer to the dual
complex.

we use is collected in Fig.(4). One reason of using boldface letters is that the
corresponding letters in plain symbol denote the extension of the element. Thus
ṽh will denote the volume of the 3-cell ṽh.

The vertices of the primal cell complex can be numbered following any cri-
terion: it is natural to use the same number to label the dual cell. Thus ph will
denote a vertex and ṽh its dual cell. An edge of a primal cell can be labeled
with two indices, the indices of the vertices connected by the edge. A notational
simplification arises if we use a single Greek letter to label the edges of the pri-
mal complex, say lα instead of lhi. A face of the dual complex will be labeled
also with a Greek index, say s̃β .
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2.4 Global Variables and Space Elements

We now show that global variables naturally refer to a space element and to a
time element. Table (3.1) lists the main global variables of acoustics and the
spatial and temporal elements with which they are associated. In the association
between a physical quantity and spatial and temporal elements we must carefully
distinguish between field variables (i.e. field functions) and global variables (i.e.
domain functions). Velocity is not a global variable but rather the time rate
of the displacement and the latter refers to a time interval. For this reason
velocity inherited a link with the time interval. This is enforced by the fact that
one cannot measure a velocity without introducing a time interval, however
small it may be. Pressure is not a global variable but rather the time rate and
the surface density of the surface impulse: the latter refers to a surface and a
time interval. For this reason pressure inherited a link with surfaces and time
intervals.

Having presented the notion of cell complex and its dual and the correspond-
ing notions of inner and outer orientations, we can examine the association of
global physical variables to spatial and temporal elements in further detail.

Let us analyze acoustic field in fluids and solids, as shown in Fig.(2). We
shall refer also to Figg.(4) and (5).

In the acoustic field in fluids, one can associate mass content to the dual
cells ṽh and mass flow to the faces s̃α of the dual cells. Kinetic potential can be
associated with the vertices ph of the primal cells and velocity circulation with
the edges lβ of the primal cells.

In the acoustic field of solids, volume forces are associated with the dual cells
ṽh and surface forces across the faces associated with the faces s̃α of the dual
cells. The displacements can be associated with the vertices ph of the primal
cells and the displacement differences will be associated with the edges lβ of the
primal cells.

2.5 Global Variables and Temporal Elements

We shall refer to time elements of Fig.(5). A primal cell complex on a time axis
exhibits time instants tn and time intervals τn. Time intervals are endowed
with inner orientation orienting them from past towards future. Time instants
are endowed with inner orientation conceiving them as sinks, i.e. considering
positive time intervals when they come to instants. This follows from the custom
of considering the time increment of a function as given by

∆f(t)def= (+1)f(t + ∆t) + (−1)f(t). (1)

We see from this expression that the “+1” and “-1” can be conceived as incidence
numbers between time intervals (1-cells) and time instants (0-cells).

Since we have found useful to consider a dual complex in space it will be
useful to consider also a dual complex in time. This is formed by the middle
instants of the primal time intervals. We shall denote the elements of the dual
complex by t̃n and τ̃n. The dual time instants inherited an outer orientation
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from the inner orientation of primal time intervals: this outer orientation is
represented by an arrow that crosses the instant. Dual time intervals also in-
herited an outer orientation from the inner orientation of primal time instants:
this outer orientation is represented by two arrows that “compress” the seg-
ment. The dual time complex has never been considered in physics and, as
consequence, neither has the notion of outer orientation.

Using boldface characters for time intervals we have the possibility to use
the corresponding normal character for the duration of intervals: so τn is the
duration of the interval τn and τ̃n is the duration of the dual interval τ̃n. More-
over τn and τ̃n are positive numbers while τn and τ̃n are time objects endowed
with orientation. Then −τn means that we have changed the orientation into
its opposite, i.e. we have performed the traditional time-reversal . The expres-
sion −τ̃n means that the dual time intervals have an opposite sign, i.e. are
conceived as bars in traction. Likewise the expression −tn means that instants
are oriented as sources: this would not be possible if the notation −tn where
used.

When we perform the ratio of a global variable referred a time interval for
the duration, the rate becomes a function of the middle instant of the interval.
Thus with reference to Fig.(5) and Table (3.8) we have

Qα(tn) =
mf [τ̃n, s̃α]

τ̃n
χh(t̃n) =

X[τn,ph]
τn

. (2)

Since rates are no longer global variables in time we use the round brackets for
them. We shall use two notations for densities and rates. The first notation
χ[τn,ph] using square brackets means that the density or the rate inherited a
link with the spatial and temporal elements of its mother variable; the second
notation χh(t̃n) denotes that the variable is a function of the point and instant.

The association of global variables to spatial and temporal elements is sum-
marized in Table(3.8).

2.6 Physical Variables and Orientation

The fact that physical variables are associated with spatial and temporal ele-
ments is only part of the story. It is easy to understand that some physical
variables require an inner orientation of the spatial and temporal element and
others require their outer orientation. So the vortex strength across a surface
can be defined as the velocity circulation along the boundary of the surface.
Since the boundary has two possible inner orientations it follows that the vor-
tex strength changes sign when we invert the inner orientation of the surface.
(see Fig.6 left). On the contrary mass flow across a surface requires an outer
orientation of the surface and then changes sign when the outer orientation is
reversed (see Fig.6 right).
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boundary@S boundary@~Sboundary@V boundary@~V

surfaceS volumeV surface~S volume~V

Figure 6: Inner and outer orientation of surfaces, volumes and their boundaries.

2.7 Space and Time Association Rule

These examples show that configuration variables refer to the elements of one
cell complex while source variables refer to the elements of the dual complex.
Since mass flow and momentum flow need a face endowed with outer orientation,
it is natural to apply them to the faces of the dual cell complex.

These examples lead us to formulate the following
association rule. Global configuration variables are associated with spatial

and temporal elements of a primal cell complex endowed with inner orientation.
Moreover, global source variables and global energy variably are associated with
spatial and temporal elements of the dual cell complex endowed with outer ori-
entation.

In short
configuration source and

variables energy variables
↓ ↓

primal complex dual complex
↓ ↓

inner orientation outer orientation.

This rule [26] offers a rational criterion to associate global variables of every
physical theory to spatial and temporal elements and, as such, it is useful in
computational physics.

3 Acoustic Waves in Fluids

The discrete formulation of acoustics will be based on the use of global vari-
ables; the introduction of mean densities is requested by constitutive equations.
Following this line of thought we shall give primary importance not to velocity
but to velocity circulation. This is a global variable associated with the 1-cells
of the primal complex because these are endowed with inner orientation. In do-
ing so we are in agreement with MAC method [10] used in fluid dynamics and
with its extension to unstructured meshes [20]; [2]. In fact in these methods
one considers the velocity component along every 1-cell: since this component
is multiplied by the length of the 1-cell it follows that the true variable is the
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circulation. By considering the circulation one avoids the approximation intro-
duced by the scalar product of the velocity in the middle point of every 1-cell
for the cell length.

To describe acoustics in fluids it is enough to use a scalar function: this
can be pressure, density, kinetic potential or condensation. We shall choose the
kinetic potential because it is a kinematical variable.

Since we have a scalar function we need a scalar equation: the natural one
is the equation expressing mass conservation.

Acoustics is based on some assumptions: motion is irrotational [22, p.251];
velocities are small if compared with sound velocity. Introducing the density
excess ρ∗ and the pressure excess p∗ defined by

{

p(t, x, y, z) = p0 + p∗(t, x, y, z)
ρ(t, x, y, z) = ρ0 + ρ∗(t, x, y, z) (3)

one assumes that ρ∗ << ρ0 and p∗ << p0 .

Model assumptions. The discrete formulation will be based on further as-
sumptions: we use a simplicial complex as primal and its barycentric subdivision
as dual. We consider that the medium is inhomogeneous, as in layered media,
and then ρc and the sound velocity cc can change from one cell to another.
The material is homogeneous inside every primal cell vc and then density ρc

and pressure pc are uniform. Also velocity uc is supposed uniform. This is in
accordance with the fact that in an irrotational motion the circulation along the
boundary of every 2-cell (tetrahedron face) vanishes. In an irrotational motion
this hypotesis cannot be accepted.

3.1 Global Configuration Variables

Continuum mechanics differs from other field theories because it admits a double
description, the material and the spatial one. This implies that in the material
description velocity s is a displacement rate while in the spatial description it
is a field vector of which one can perform the circulation Γ along a line. When
velocity is considered as displacement rate it is a controvariant vector because
the displacement s is a controvariant vector; when considered as field vector it
is a covariant one since it can be the gradient of kinetic potential ϕ.

From this follows that velocity is not a global variable but a rate in the
material description and a line density in the spatial description. Thus in the
integral formulation

sA [T] =
∫

T
uA(t) dt Γ [I,L] =

∫

L
u(t,P) · dL. (4)

Acoustics is based on the hypothesis that the velocity field is irrotational.
This condition, which is commonly expressed by the differential condition curlu =
0, can be expressed in a discrete formulation stating that the velocity circulation
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along any reducible closed path vanishes:

Γ [I, ∂S] = 0. (5)

Vortex strength W , that is referred to a surface, can be defined as the velocity
circulation along the boundary of the surface. It follows that for an irrotational
motion is

W [I,S] = 0. (6)

In this hypothesis one can introduce the kinetic potential ϕ at every point
defined as the velocity circulation from a fixed point to the actual point.

Let us consider a simplicial complex in the working space region and a one-
dimensional cell complex in the working time interval, as shown in Fig.(4). To
emphasize the association of the kinetic potential with the vertices ph of the
primal space complex and with the instants tn of the primal time complex we
write: ϕ[tn,ph]. Since time instants and space points are elements without
extension the domain function is reduced to a point function and then we can
write simply ϕ[tn,ph] ≡ ϕh(tn). The space variation of the kinetic potential
ϕ gives the velocity circulation Γ . We will need also the time variations of
the kinetic potential we shall call X. The last three variables are global and
the spatial and temporal element with which they are associated is shown in
Table(3.1). We remark that acceleration is the material derivative of velocity
and, for small velocities, in spatial description it can be approximated by the
partial time derivative of velocity.

Table 1: Global physical variables of acoustics in fluids and the associated spatial
and temporal elements. The suffix “c” means content ; the suffix “f” means flow ;
the suffix “s” means surface and the suffix “v” means volume.

global configuration variables

kinetic potential ϕ [I,P]
velocity circulation Γ [I,L]
vortex strength W [I,S]
(no known name) X[T,P]

global source variables

mass content mc[Ĩ, Ṽ]
mass flow mf [T̃, S̃]
momentum content Pc[Ĩ, Ṽ]
momentum flow Pf [T̃, S̃]
surface impulse Is[T̃, S̃]
volume impulse Iv[T̃, Ṽ]

3.2 Velocity

Once we decide to use the kinetic potential, the fundamental problem of acous-
tics, in the differential formulation, is to find the kinetic potential ϕ at all space
points and at all time instants, i.e. ϕ(t,x). In a discrete formulation we can
find the kinetic potential only at the 0-cells of the space primal complex and at
the 0-cells of the primal time complex: ϕ[tn,ph]. Its value inside every space
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3-cell and inside every time 1-cell must be interpolated. The interpolation we
carry out is to suppose that the kinetic potential inside every 3-cell vc in a time
interval τn is an affine function of cartesian coordinates and an affine function
of time i.e.

ϕ(t, x, y, z) = (b + a t) + (bx + ax t)x + (by + ay t) y + (bz + az t) z (7)

This choice implies that the velocity field u is uniform inside every cell and
affine in every time interval. Since the velocity u is uniform inside the simplex,
for every line segment L whose boundary points are denoted A and B we can
write

u ·L = ϕB − ϕA (8)

or
Lxux + Lyuy + Lzuz = ϕB − ϕA. (9)

This relation permit us to evaluate the velocity components ux, uy, uz at an
instant tn in terms of the kinetic potential at the four vertices of every simplex.
Let us call h, i, j, k the four vertices of an 3-cell vc ordered so as to form a
right-hand helix. Writing equation (7), for the four vertices, subtracting one
equation from the preceeding one and denoting by Li, Lj , Lk the three vectors
that described the oriented edges starting from the vertex h, as shown in Fig.(7),
we can write





Lix Liy Liz

Ljx Ljy Ljz

Lkx Lky Lkz





c







ux(tn)
uy(tn)
uz(tn)







c

=







ϕi(tn)− ϕh(tn)
ϕj(tn)− ϕh(tn)
ϕk(tn)− ϕh(tn)







c

. (10)

Face Ai, opposite to vertex i, is described by the area vector Ai = 1
2 Lk× Lj .

With reference to Fig.(7) we obtain

Ai = 1
2 Lk× Lj = 1

2

∣

∣

∣

∣

∣

∣

i j k
Lkx Lky Lkz

Ljx Ljy Ljz

∣

∣

∣

∣

∣

∣

(11)

from which

Aix = 1
2

∣

∣

∣

∣

Lky Lkz

Ljy Ljz

∣

∣

∣

∣

, etc. (12)

Similar relations can be obtained for Aj ,Ak,Ah.
The oriented volume of the tetrahedron is vc = 1/6 (Li×Lj) ·Lk. Using

Cramer’s rule we obtain

ux(tn) = − 1
3 vc

[

Aix ϕi(tn) + Ajx ϕj(tn) + Akx ϕk(tn) + Ahx ϕh(tn)
]

(13)

where we have used the relation −(Aix +Ajx +Akx) = Ahx, as shown in Fig.(7).
In conclusion we have:

uc(tn) = − 1
3 vc

∑

m∈V(c)

Am ϕm(tn). (14)
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Figure 7: The projection of a tetrahedron face on a coordinate plane.

where V(c) denotes the set of vertices of the 3-cell vc.
Then we can evaluate the velocity inside every primal cell (tetrahedron) in

terms of the kinetic potential at the vertices of the tetrahedron. These formulae
coincide with the classical one used in finite elements[5, p.40], as we show later.

One can see that the notion of affine function fits simplexes perfectly because
an affine function has a number of coefficients equal to the number of vertices
of a simplex.

3.3 A Short Derivation

Formula (14) is so simple that one might suspect that it can be obtained directly.
This is the case. We only need to introduce the discrete analogous of the gradient
operator. Let us consider a scalar function u = f(P) defined in a region Ω. Let
us consider a point B in the region and a volume V that contains the point1.
Let ∂V be the boundary of the volume. To deal with a discrete formulation the
volume will be chosen as a polyhedron with B as its centroid. Let us denote by
Sk the k-th face of the polyhedron, with Bk the centroid of Sk and with Ak

the area-vector of the face Sk directed outwards. The vector

G(B) def=

∑

k

f(Bk)Ak

V
(15)

1 We remark that V denotes a space region called “volume” and V denotes its extension,
also called “volume”!
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will be called the discrete gradient of the function f(P) at B. It can easily
be shown that this formula reduces to the traditional gradient at the limit for
V → 0.

’h

’i

’

k
’

j

B

A h

A i

A j

A k

Figure 8: The discrete gradient.

Since the kinetic potential is an affine function, the potentials at the centroids
of the faces of the tetrahedron, are given by the aritmetic mean of the potentials
at vertices. Then

Grad ϕ =
1
vc

[

ϕh+ϕi+ϕj

3
Ak+

ϕi+ϕk+ϕj

3
Ah+

ϕj +ϕk+ϕh

3
Ai+

ϕk+ϕi+ϕh

3
Aj

]

.

(16)
Since Ah + Ai + Aj + Ak = 0 after simplification we obtain

u = − 1
3 vc

(Ah ϕh + Ai ϕi + Aj ϕj + Ak ϕk) (17)

that coincides with Eq.(14).

3.4 The Function χ

We shall need the variable

X[τn,ph] def= ϕ[tn,ph]− ϕ[tn−1,ph] (18)

and the corresponding rate

χh(t̃n) def=
X[τn,ph]

τn
. (19)

Both variables are unnamed. For small velocities χ = ∂tϕ can be identified with
the acceleration potential.
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3.5 Global Source Variables

In material description mass is a global variable and it is an attribute of a fluid
body. In spatial description mass is split into mass content mc, contained in
a control volume (a cell), and in mass flow mf across a fixed surface (a cell
face). The same happens for momentum: there is a momentum content P c

and a momentum flow P f . Lastly, also the impulse can be divided into volume
impulse and surface impulse we shall denote I v, I s.

As we have said, in the spatial description global physical variables natu-
rally refer to space-time elements of a cell complex and of its dual. In particular
source variables such as mass, momentum and impulse are associated with dual
cells, i.e. with the polyhedra that contain the nodes, because they need spatial
elements endowed with outer orientation. The label of a dual cell is the same
as that of the vertex of the primal cell contained in it. The amounts of these
source variables contained in the dual cell ṽh will be denoted by m c

h,P c
h, I v

h re-
spectively. In numerical treatment of continuum mechanics it is natural to start
by considering the amount of mass, momentum and volume impulse contained
in every primal cell vc which will be denoted by m c

c ,P c
c , I v

c respectively. This
implies that we must express the source variables contained in every dual cell
ṽh in terms of the amounts that are contained inside every primal cell vc, as
done in Table (3.5).

If one considers simplicial complexes and uses the barycentric subdivision to
construct a dual complex, only 1/4 of a primal cell vc is contained in the dual
cell ṽh. We remark that using Voronoi dual instead of the barycentric one the
fraction of the dual cell contained in the primal one is variable from cell to cell.

In fluid dynamics there are six global source variables of interest quoted in
Table (3.1). To write balance equations we must use dual cells because they are
endowed with outer orientation. This corresponds to the vertex-centered choice
of Finite Volume Method (FVM). Balance of mass and of momentum can be
written







mc[Ĩ+, Ṽ]−mc[Ĩ−, Ṽ] + mf [T̃, ∂Ṽ] = 0

P c[Ĩ+, Ṽ]−P c[Ĩ−, Ṽ] + Pf [T̃, ∂Ṽ] = I s[T̃, ∂Ṽ] + I v[T̃, Ṽ].
(20)

In order to introduce configuration variables into balance laws we must use
constitutive equations. The latter require the introduction of mean rates and
mean densities.

3.6 Mass Current

From mass flow we can define its rate, i.e. mass current Q, and mass current
density vector q. Mass flow mf [T̃, S̃] is a global variable referred to a time
interval and a surface both endowed with outer orientation. Let us consider a
small plane surface, whose area-vector will be denoted by A, and a small time
interval T̃ and its middle instant I. Mass current Q and mass current density

18



Table 2: A list of useful relations between variables of acoustics in fluids.

ṽh =
1
4

∑

c∈J (h)

vc

ṽh ρh(t̃n) =
1
4

∑

c∈J (h)

vc ρc(t̃n)

uc(t̃n) =
1
2

[

uc(tn−1) + uc(tn)
]

ṽh ρh(t̃n)uh(t̃n) =
1
4

∑

c∈J (h)

vc ρc(t̃n)uc(t̃n)

mc[t̃n, ṽh] =
1
4

∑

c∈J (h)

vc ρc(t̃n) = ṽh ρh(t̃n)

Pc[t̃n, ṽh] =
1
4

∑

c∈J (h)

vc ρc(t̃n)uc(t̃n) ≈ ṽh ρ0
huh(t̃n)

ρc(tn) =
1
2

[ρc(t̃n) + ρc(t̃n+1)]

mf [τ̃n, ∂ṽh] =
1
3
τ̃n

∑

c∈J (h)

ρc(tn)Ac
h ·uc(tn) ≈ 1

3
τ̃nρ0

c

∑

c∈J (h)

Ac
h ·uc(tn)

P f [τ̃n, ∂ṽh] =
1
3
τ̃n

∑

c∈J (h)

[

ρc(tn)Ac
h ·uc(tn)

]

uc(tn)

≈ 1
3
τ̃n ρ0

c

∑

c∈J (h)

[

Ac
h·uc(tn)

]

uc(tn) ≈ 0

I s[τ̃n, ∂ṽh] = −1
3
τ̃n

∑

c∈J (h)

pc(tn)Ac
h = −τ̃n Grad p(tn)

∣

∣

∣

h

I v[τ̃n,vh] =
1
4
τ̃n g

∑

c∈J (h)

vc ρc(t̃n) = τ̃ng ṽh ρh(t̃n) ≈ τ̃n g ṽh ρ0
h
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vector q are linked by

Q(I) =
mf [T̃, S̃]

T̃
= A ·q(I). (21)

We see that mass current and mass current density vector can be introduced
without resorting to the notion of limit simply by considering a small space
region in which velocity is uniform in space and affine in time.

Let us consider that part of the boundary of the dual cell that is contained
in a primal cell, as shown in Fig.(9d). Let us denote as S1, S2, S3 the three
faces and A1,A2,A3 the corresponding area vectors oriented outward. Let us
consider the three lateral faces S4, S5, S6 of the tetrahedron and the relative
vectors A4,A5,A6 with outward direction as shown in Fig.(9e). Since the six
faces form the boundary of a volume the sum of their vectors vanishes and then

A1 + A2 + A3 = −(A4 + A5 + A6). (22)

One can easily see that if one uses the centroids of the edges, faces and

C

1

2

4
5

6 3

p
31/

4

a) b) c)

d) e) f)

hhh

h
h h

ii i

ii

jj j

jj

k

kk

A 6

A 4

A 5

A 1

A 2

A 3

A h=4

c c

cc

A c
h

Q c
h

Q c
h

Q c
h

A c
h=3

Figure 9: The part of the dual polyhedron contained in the tetrahedron that
corresponds to every vertex of the tetrahedron.

volumes the area of every lateral face, like A4, A5, A6, is 1/3 of the area of the
corresponding face of the tetrahedron. If we denote by Ac

h the area-vector of

20



the face of vc opposite to the vertex ph and directed outwards, it follows that

A1 + A2 + A3 = −1
3
(Ai + Aj + Ak) =

Ac
h

3
(23)

where we have used the property that the sum of the vectors of the four faces
of the tetrahedron vanishes. Then the part of the boundary of the dual cell
contained in every tetrahedron is equivalent to a triangle parallel to the opposite
face h (opposed to the vertex h) and whose area is 1/3 of the face h. The term
“equivalent” means that the area-vector of the equivalent surface is equal to the
sum of the three area-vectors, as shown in Fig.(9f).

Hence the mass current Qc
h crossing the part of the surface of the dual cell

contained in the cell vc is

Qc
h(tn) =

1
3
q c(tn). (24)

3.7 Constitutive Equations

As we have said, equations that link a source variable with a configuration
variable are called constitutive equations . We list the constitutive equations of
perfect fluid dynamics.

• mass current ↔ velocity:

qc(tn) = ρc(tn)uc(tn) ≈ ρ0
c uc(tn). (25)

where the suffix ”c” refers to a primal 3-cell vc.
• momentum content ↔ velocity:

P c[t̃n, ṽh] = ṽh ρh(t̃n)uh(t̃n) ≈ ṽh ρ0
h uh(t̃n). (26)

We remark that velocity in (25) and in (26) refers to different instants.
Then

uc(t̃n)=
uc(tn−1) + uc(tn)

2
. (27)

• momentum flow ↔ velocity: Denoting by A the area-vector of a plane
surface s̃ contained in vc, we have

P f [τ̃n, s̃] = τ̃n [qc(tn) ·A] uc(tn) ≈ τ̃n ρ0
c (uc(tn) ·A) uc(tn) ≈ 0. (28)

• pressure ↔ volume; The adiabatic law gives

p∗c(t̃n) ≈ c2
c ρ∗c(t̃n) (29)

i.e. pressure excess is proportional to density excess . We remark that while
pressure is referred to dual intervals, and then it is function of the primal
instants, density is referred to dual instants, as shown in Table(3.8).

• mass density ↔ χ: we shall prove later that the generalized Bernoulli
equation leads to the relation

ρh(t̃n) ≈ ρ0
h

[

1− 1
c2
h

χh(t̃n)
]

(30)

where the suffix h refers to a 0-cell ph (for χ) and to the dual cell ṽh (for
ρ and c).
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3.8 Mass Balance

Mass content mc and mass flow mf are global source quantities and, as such,
refer to the cells of the dual cell complex both in time and space. Mass content
is referred to a volume ṽh and a time instant t̃n while mass flow is referred to
a surface s̃α and a time interval τ̃n. We can write

mc[t̃n, ṽh] mf [τ̃n, s̃α]. (31)

With reference to Eq.(20) and to Table (3.8) we can write mass balance in
discrete form

mc[t̃n+1, ṽh]−mc[t̃n, ṽh] + mf [τ̃n, ∂ṽh] = 0. (32)

Moreover, mass going out from the boundary of the dual 3-cell ṽh is the sum
of the masses outflowing across the faces and then

mf [τ̃n, ∂ṽh] = τ̃n

∑

c∈J (h)

Qc
h(tn) (33)

where J (h) is the set of primal 3-cells that have the 0-cell h in common.
Among the dual cells there are those that are broken by the boundary of the

region Ω. For boundary (broken) dual cells mass flow given by Eq.(33) can be

~vh

B h

Figure 10: Boundary polyhedra.

written
mf [τ̃n, ∂ṽh] =

∑

c∈J (h)

Qc
h(tn)−Bh(tn) (34)

where Bh denotes the mass current entering the broken dual polyhedron ṽh

from the boundary of the region.
We want to express Qc

h in terms of the kinetic potentials at the vertices of
the cell vc. By inserting Eq.(25) and Eq.(14) in Eq.(24) and putting

f c
hk

def= −ρ0
1
vc

Ac
h

3
·A

c
k

3
= f c

kh (35)
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we obtain
Qc

h(tn) =
∑

k∈V(c)

f c
hk ϕk(tn). (36)

Remembering Eq.(30), the relation between χh and ϕh given by Eq.(19) we
obtain

mc[t̃n+1, ṽh]−mc[t̃n, ṽh] = − ṽh

τn

ρ0
h

c2
h

[ϕh(tn+1)− 2 ϕh(tn) + ϕ(tn−1)] . (37)

With these results mass balance (32) becomes

− ṽh

τn τ̃n

ρ0
h

c2
h

[

ϕh(tn+1)− 2 ϕh(tn) + ϕh(tn−1)
]

+
∑

c∈J (h)

∑

k∈V(c)

f c
hk ϕk(tn) = Bh(tn).

(38)
This is the discrete form of d’Alembert equation that can be directly used

for computational acoustics. We remark that the same equation is valid for
inner and boundary (broken) cells: for inner cells one put Bh = 0.

Table 3: Space and time association of acoustical variables: densities and rates
in italics.

kinetic potential ϕh(tn) = ϕ[tn,ph]
velocity circulation Γ [tn, lα]
vortex strength W [tn, sβ ]
(no known name) X[τn,ph]
velocity uc(tn) = u[tn,vc]
(no known name) χh(t̃n) = χ[t̃n,ph]

mass content mc[t̃n, ṽh]
mass density ρh(t̃n) = ρ[t̃n, ṽh]
mass flow mf [τ̃n, s̃α]
mass current Qα(tn) = Q[τ̃n, s̃α]
mass current density qc(tn) = q[τ̃n,vc]
momentum content Pc[t̃n, ṽh]
momentum flow Pf [τ̃n, s̃α]
surface impulse Is[τ̃n, s̃α]
pressure (stress tensor) pc(tn) = p[τ̃n,vc]
volume impulse Iv[τ̃n, ṽh]
body force density f [τ̃n, ṽh]
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3.9 Momentum Balance

Momentum content P c and momentum flow P f are global source quantities
and, as such, refer to the cells of the dual cell complex both in time and space.
Momentum content is referred to a dual cell ṽh and to a dual time instant t̃n.
With reference to Eq.(20) and Table (3.8) one can write momentum balance in
discrete form

P c[t̃n+1, ṽh]−P c[t̃n, ṽh] + P f [τ̃n, ∂ṽh] = I s[τ̃n, ∂ṽh] + I v[τ̃n, ṽh]. (39)

In an inviscid fluid the surface forces reduce to the pressure force. Pressure is
then the surface density of the surface impulse rate.

With reference to Fig.(9) the sum of the normal forces N acting on the three
surfaces S1, S2, S3 is

Nc
h = −pc[A1 + A2 + A3] = −pc

Ac
h

3
. (40)

Then the surface impulse across the boundary of the dual 3-cell is given by

I s[τ̃n, ∂ṽh] = −τ̃n
1
3

∑

c∈J (h)

pc(tn)Ac
h. (41)

Since inside every primal 3-cell density and velocity are uniform, momentum
flow can be written

P f [τ̃n, ∂ṽh] ≈ τ̃n
1
3

∑

c∈J (h)

ρ0
c (uc(tn) · Ac

h) uc(tn). (42)

Inserting these expressions in Eq.(39), after division for ṽh τ̃n, and remem-
bering that the discrete gradient of a function p(t,x) can be defined by the
expression (15), the momentum balance on the dual cell becomes

P c
h(t̃n+1)−P c

h(t̃n) + τ̃n
1
3

∑

c∈J (h)

ρ0
c (uc(tn) ·Ac

h)uc(tn) ≈ −τ̃n
1
3

∑

c∈J (h)

pc(tn)Ac
h + τ̃n ṽhfh(tn).

(43)
Eq.(43) contains the discrete gradient of the pressure with the minus sign, as in
the differential case. Neglecting the momentum flow on account of the hypoth-
esis of small velocities, the last equation becomes

uh(t̃n+1)−uh(t̃n)
τ̃n

≈−Grad p∗h(tn)
ρ0

h
+

fh −Grad p0
h

ρ0
h

. (44)

The last terms vanishes because the pressure p0
h is in equilibrium with the body

force fh. Remembering Eq.(17) we can write

ρ0
h Grad χh(tn) ≈ −Grad p∗h(tn). (45)
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These approximations enable us to obtain the generalized Bernoulli equation
in the form

χh(tn) +
p∗h(tn)

ρ0
h

= C(tn) (46)

where C(tn) is an arbitrary function of time. Since the kinetic potential is
defined modulo an additive function of time we can put C(tn) = 0 (see[12,
p.84][11, p.31]). Then we can write the generalized Bernoulli equation as

χh(tn) +
ph(tn)− p0

h

ρ0
h

= 0. (47)

Since both χ and p must be evaluated at the same instant, we can apply the
preceeding relation to the dual instant t̃n that is proper for χ. Remembering
constitutive equation (29) we can write

ρh(t̃n) ≈ ρ0
h

[

1− 1
c2
h

χh(t̃n)
]

. (48)

This is the constitutive equation we have assumed, see Eq.(30).

The cell method. A numerical method that uses global variables as a start-
ing point, referring configuration variables to corresponding cells of a primal
complex and source variables to corresponding cells of the dual, avoiding both
the differential formulation and the integral formulation will be called the cell
method .

4 Comparison with Finite Element Method

We now prove that the matrix that we obtained coincides with that of FEM
when the cells are simplexes and linear shape functions are used. In FEM the
weak formulation of the differential equation leads to

fc
hk = −ρ0

∫

vc

∇Nh(x) ·∇Nk(x) dV. (49)

Using linear shape functions we have

f c
hk = −ρ0 vc∇Nh(x) ·∇Nk(x). (50)

With reference to Fig.(11) we have[13, p.43;p.50].

∇Nc
h(x) = −n c

h

dh
= −Ahn c

h

Ah dh
=

Ac
h

3 vc
(51)

We then have

fc
hk = −ρ0 vc∇Nc

h ·∇Nc
k = −ρ0

1
vc

Ac
h

3
· A

c
k

3
(52)
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that coincides with the one given in our approach, see Eq.(35). We remark that
FEM distributes the currents to the nodes while in the cell method they are
associated with the faces of the dual cells and are not transferred to the nodes.

jh
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y

z
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dh
A e

e

e h

h

f=0

f=1 enh

Figure 11: Since a linear shape function N c
h(x) assumes the value 1 in the

vertex h and 0 on the remaining vertices, its gradient is uniform inside the
tetrahedron; it is directed from the opposite edge (or face) towards the vertex
h and its modulus is 1/dh.

5 Comparison with the Finite Volume Method

The Cell Method (CM) is very similar to the Finite Volume Method (FVM).
The main differences are listed below.

• FVM uses the integral form of the conservation equations as the starting
point [6, p.67]. Though in principle it does not require the availability
of the differential formulation, in practice one uses field variables , that
are the natural ingredients of differential formulation, and evaluate global
variables by integration. “To obtain the algebraic equation for each control
volume, the surface and volume integrals need to be approximated using
quadrature formulae.” [6, p.68]

CM, on the contrary, directly uses global variables and take experimental
laws (balance laws, circuital laws, constitutive laws, etc) in their discrete
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form.

• in FVM the control volumes are chosen according to three schemes: the
node centered or vertex-based , the cell centered and the cell vertex schemes.
“For cell-centered schemes, the control volumes are taken as the trian-
gles themselves, whereas for a vertex-based scheme the control volumes are
taken as the cells defined by the dual mesh.” [15, p.22]

CM starts with a pair of dual complexes. Physical variables have a well
defined reference to the spatial elements of a cell complex and its dual. The
conservation law is enforced on the dual polygon of every primal vertex: in
this respect (and only in this respect) it corresponds to the vertex=based
(or node-centered) scheme of FVM.

• FVM usually do not use interpolating functions inside every primal cell.

CM, on the contrary, permits us to use interpolating functions on the
primal cells in order to obtain higher order of convergence, as in FEM.
Thus a fourth order convergence on a structured mesh made of triangles
has been obtained considering the parabolic interpolating functions inside
the triangles: see [28].

5.1 Conclusions

It is customary to obtain a discrete (or finite) formulation of the equations of
acoustics and other physical fields passing through differential formulation. The
paper has shown that it is possible to obtain a discrete formulation starting
directly from experimental laws. This is accomplished using global variables
and realizing their natural association with spatial and temporal elements. In
such an association an important role is played by the notions of inner and
outer orientations of a spatial and temporal element. This leads us to use a
cell complex and its dual instead of a coordinate system. Once the variable
of acoustics are classified in one of the three classes, configuration, source and
energy variables, it is seen that configuration variables are naturally referred to
the cells of a primal complex while source variables are referred to those of the
dual complex.

Constitutive equations, that link configuration with source variables, require
the introduction of mean densities and mean rates. The approximation of con-
sidering the field inside every cell of the primal complex as uniform permits us
to avoid the limit process.

The procedure presented is not peculiar to acoustics in fluids but can be
applied to every field. It has been applied to elasticity [4]; mechanics of fracture
[7], [8], [9], [16]; mechanics of masonry [17], [18]; mechanics of sintered alloys
[3]; elasto-plasticity [19]; electromagnetism [27],[14].

The scheme here presented gives a second order accuracy on a structured
mesh. It has been proved that using parabolic interpolation functions inside
every triangle one can obtain a fourth order accuracy on structured meshes
[28], [31].
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6

�
��

�
���

6

�
��

�
���

Bernoulli equation -

constitutive equation -

velocity
potential

mass
production

velocity
circulation

mass
flow

TP

TL

IP

IL

ĨṼ
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