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Short abstract: One of the main research fields in past years concerns the modeling of 
heterogeneous materials. For these materials, the use of the classical local continuum concept does 
not seem to be adequate. The classical local continuum concept leads to constitutive models falling 
within the category of simple nonpolar materials (Noll 1972). For these materials, the stress at a 
given point uniquely depends on the current values, and possibly also the previous history, of 
deformation and temperature at that point only (Bažant and Jirásek 2002). 
Beginning with Krumhansl (1965), Rogula (1965), Eringen (1966), Kunin (1966), and Kröner 
(1968), the idea was promulgated that heterogeneous materials should properly be modeled by some 
type of nonlocal continuum. Some preliminary ideas on nonlocal elasticity can be traced back to the 
late 19th century (Duhem 1893). Nonlocal continua are continua in which the stress at a certain 
point is not a function of the strain at the same point, but a function of the strain distribution over a 
certain representative volume of the material centered at that point (Bažant and Chang 1984). Thus, 
nonlocality is tantamount to an abandonment of the principle of the local action of classical 
continuum mechanics (Bažant and Jirásek 2002). 
Local constitutive relations between stress and strain tensors are not adequate for describing the 
mechanical behavior of solids in the classical differential formulation, since no material is an ideal 
continuum, decomposable into a set of infinitesimal material volumes, each of which can be 
described independently. All materials, natural and man-made, are characterized by microstructural 
details whose size ranges over many order of magnitude (Bažant and Jirásek 2002). In constructing 
a material model, one must select a certain resolution level below which the microstructural details 
are not explicitly visible. Instead of refining the explicit resolution level, it is often more effective to 
use various forms of generalized continuum formulation, dealing with material that are nonsimple 
or polar, or both. A list of enriched continuum models is provided in Bažant and Jirásek (2002). 
Among these, a great variety of nonlocal models was developed. 
The aim of the present study is to show that nonlocal constitutive relations between stress and strain 
tensors are not strictly needed to construct a material model. They are required only if a differential 
formulation is used for modeling nonlocality, since differential operators are local. The physical 
well-posedness of nonlocality is discussed with regard to the differential and discrete formulations. 
Nonlocality was found to be a concept not attaining to the description of the material, but of the 
phenomenon. This made it possible to discuss the opportunity of using nonlocality in order to give 
respectability to strain-softening damage models. The mathematical and physical well-posedness 
and the existence of strain-softening are also discussed. When using the differential formulation, a 
length scale must be introduced into the material description of a strain-softening modeling. This 
need has been here justified on the basis of the geometrical information which has been lost in 
performing the limit process. It was shown how, avoiding the limit process, a length scale is 
intrinsically taken into account into a discrete formulation. Thus, the discrete formulation turns out 
to be more appealing than the differential formulation with nonlocal approach, from the physical 
point of view. 
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On Nonlocality and Locality: 
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Elena Ferretti1 

 
Extended abstract: One of the main research fields in past years concerns the modeling of heterogeneous 
materials. For these materials, the use of the classical local continuum concept does not seem to be adequate. 
This concept leads to constitutive models falling within the category of simple nonpolar materials (Noll 
1972), with the stress at a given point uniquely depending on the current values, and possibly also the 
previous history, of deformation and temperature at that point only (Bažant and Jirásek 2002). 
Beginning with Krumhansl (1965), Rogula (1965), Eringen (1966), Kunin (1966), and Kröner (1968), the 
idea was promulgated that heterogeneous materials should properly be modeled by some type of nonlocal 
continuum. Some preliminary ideas on nonlocal elasticity can be traced back to the late 19th century (Duhem 
1893). Nonlocal continua are continua in which the stress at a certain point is not a function of the strain at 
the same point, but a function of the strain distribution over a certain representative volume of the material 
centered at that point (Bažant and Chang 1984). Thus, nonlocality is tantamount to an abandonment of the 
principle of the local action of classical continuum mechanics (Bažant and Jirásek 2002). 
Local constitutive relations between stress and strain tensors are not adequate for describing the mechanical 
behavior of solids in the classical differential formulation, since no material is an ideal continuum, 
decomposable into a set of infinitesimal material volumes, each of which can be described independently. 
All materials, natural and man-made, are characterized by microstructural details whose size ranges over 
many order of magnitude (Bažant and Jirásek 2002). In constructing a material model, one must select a 
certain resolution level below which the microstructural details are not explicitly visible. Instead of refining 
the explicit resolution level, it is often more effective to use various forms of generalized continuum 
formulation, dealing with material that are nonsimple or polar, or both. A list of enriched continuum models 
is provided in Bažant and Jirásek (2002). Among these, a great variety of nonlocal models was developed. 
Nonlocal approaches were employed in various branches of physics. In solid mechanics, there exist two 
types of problem motivated by the need to improve the classical continuum description with an internal 
length parameter: those with strain-softening and those with no strain-softening at all. They all share the 
common need of modeling the size effect, which is impossible in the context of the classical plasticity. 

The analysis of solid mechanics is 
traditionally based on a differential 
formulation. This formulation requires 
field functions (Fig. 1), which have to 
depend on point position, x, y, z, and 
instants, t. Only on this condition is it 
possible to find the derivatives and, 
then, to apply the differential 
formulation. So, if the field functions are 
not directly described in terms of x, y, z, 
and t, they are obtained from global 
variables, by performing densities and 
rates (Fig. 1). Global variables are 

domain variables, depending on x, y, z, and t, but also on line extensions, L, areas, S, volumes, V, and time 
intervals, Δt. 
Reduction of global variables to point and instant variables is not physically appealing. As far as the point-
position reduction of variables is concerned, one should consider that any physical phenomenon occurs in 
space. Space, with its multi-dimensional geometrical structure, is the natural referent of any phenomenon. In 
other words, physics has an intrinsic length scale. Consequently, all global variables are implicitly associated 
with geometrical objects provided with an extension (points, but also lines, areas and volumes). In order to 
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Fig. 1. How to achieve the solution thought the Cell Method and the 
differential formulation 
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preserve the physical well-posedness of the solving equations, the strict relationship between physics and 
geometry must be preserved. The preservation is not guaranteed by performing the limit process. 
On the other hand, it is now a commonly accepted fact that the solution of a problem can be governed by the 
ratio of the physical dimensions of a structure to an intrinsic material length. The dependence on the size 
effect cannot be resolved by a differential formulation, since the geometrical information, i.e. the intrinsic 
length scale of physics, has been lost. The material lengths enclosed in various forms of generalized 
continuum theories arise from the homogenization procedure and have their origin in the characteristics of 
the heterogeneous microstructure that are not explicitly resolved by the differential formulation. In this 
sense, the differential formulation could be considered as intrinsically local. It is here assumed that the 
intrinsic locality of differential operators is the main reason why nonlocal material models must be 
introduced in order to satisfy the nonlocality of physical phenomena. In other words, nonlocality attains to 
physics, and not necessarily to some type of material model. If the problem is studied in the context of the 
differential formulation, which is a local formulation, nonlocality must be recovered by means of some type 
of enriched continuum models. Otherwise, if nonlocality is implicit in the formulation, there is no longer any 
need to employ nonlocal material models for the description of solid mechanics. 
As a proof of what has been asserted, one should consider that the theories of nonlocal elasticity advanced by 
Eringen and Edelen in the early 1970s (Edelen et al. 1971; Eringen 1972; Eringen and Edelen 1972) 
attributed a nonlocal character to body forces, mass, entropy, and internal energy. These are all global 
variables whose geometrical referent is a volume. It is thus clear that they, like all variables whose 
geometrical referent is more than zero-dimensional, cannot be properly described in a context in which all 
variables are related to points. Performing the limit process acts as a projection from 3D physics into 0D 
physics. A description of phenomena living in more-than-zero-dimensional physics is not possible in 0D 
physics if a length scale is not supplied. On the other hand, if the differential formulation is abandoned in 
favor of a discrete one, the limit process is no longer performed and we can directly operate in 3D physics. In 
this latter case, the length scale is naturally associated with global variables and nonlocal effects are 
intrinsically taken into account. 
The use of a discrete formulation instead of a differential one is justified just by the heterogeneous 
microstructure of materials. In fact, since matter is discrete on a molecular scale, the density finding process 
and the notion itself of density lose their physical sense. Moreover, when performing densities and rates, the 
intention is to formulate the field laws in an exact form. Nevertheless, the differential formulation can only 
be solved for very simple geometries and particular boundary conditions. To obtain a solution in the general 
case, the differential equations must be expressed in a discrete form (for each differential method, Fig. 1). 
Consequently, the final solution is an approximation in all cases. It therefore seems unnecessary to use exact 

equations if, to solve them, we must 
introduce some kind of approximation. 
In order to clarify why physics has an 
intrinsic length scale, let us now choose a set 
of points in space, said the set of primal 
nodes P (black points in Fig. 2). The lines 
connecting the primal nodes (black lines in 
Fig. 2) define a spatial mesh, said the primal 
cell complex. Edges, areas, and volumes of 
the primal cell complex are, respectively, the 
primal sides L, surfaces S, and volumes V. 
Now, consider the surfaces, locus of the 

points which are equidistant from each pair of primal nodes (gray surfaces in Fig. 2). These surfaces can be 
used for building a second spatial mesh (Fig. 2), said the dual cell complex. Points, edges, areas, and 
volumes of the dual cell complex are, respectively, the dual nodes P , sides L , surfaces S , and volumes V . 
It can be shown (Tonti 1972) that the variables of each physical theory are not related to the geometrical 
objects of one cell complex only. A relationship between variables and geometrical objects of both cell 
complexes is established. 
Geometrical and temporal structures of space can be endowed with orientation. As far as the spatial elements 
are concerned, whenever the orientation of a space element lies on the element itself, an inner orientation is 
established, while, whenever the orientation of a space element depends on the space in which the element is 
embedded, an outer orientation is established. Inner and outer orientations for one dual cell and some primal 

Fig. 2. Correspondence between objects of the primal and dual 
cell complexes in 3D space 
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cells are shown in Fig. 2. It can easily be seen how providing the primal complex with an inner orientation, 
all elements of the dual complex are endowed with an outer orientation. 
In accordance with Hallen (1962), Penfield and Haus (1967), and Tonti (1972), all physical variables belong 
to one of the following three classes: 
1. Configuration variables, describing the field configuration (displacements for solid mechanics, spatial 

velocity for fluidodynamics, electric potential for electrostatics, temperature for thermal conduction, 
etc.). All variables linked to configuration variables by operations of sum, integration, difference, 
division by a length, an area, a volume, and an interval, limit process, time and space derivatives are 
configuration variables. 

2. Source variables, describing the field sources (forces for solid mechanics and fluidodynamics, masses 
for geodesy, electric charges for electrostatics, electric currents for magnetostatics, heat sources for 
thermal conduction, etc.). All variables linked to source variables by operations of sum, integration, 
difference, product and division by a length, an area, a volume, and an interval, time and space 
derivatives are source variables. 

3. Energetic variables, resulting from the product of a configuration variable for a source variable.  
It is worth noting that not only variables, but also their classification can be put in relationship with 
geometry. The objects of the primal cell complex are natural geometrical referents of configuration variables, 
while the objects of the dual cell complex are natural geometrical referents of source variables. The 
consequence of this geometrical property, in conjunction with the relationship between cell complexes and 
type of orientation, is remarkable: by providing the primal cell complex with an inner orientation, 
configuration variables of any field theory are associated with cells endowed with an inner orientation, while 
source variables are associated with cells endowed with an outer orientation. 
Due to the correspondence between variables and geometry, including duality and orientation properties, a 
mathematical description of a phenomenon cannot leave out of consideration the geometrical structure of the 
phenomenon itself. The coordinate systems of the differential formulation are not sufficient for describing 
phenomena, since they are adequate to describe only points in space and time. A formulation aimed at 
preserving the geometrical structure of phenomena must use some kind of spatial and temporal elements. 
The preservation of the geometrical structure of phenomena is the main intent of the Cell Method (CM), a 
method developed by Tonti (2001), providing a direct finite formulation of field equations, without requiring 
a differential formulation (Fig. 1). This is the reason why the CM uses a complex of primal and dual cells as 
natural geometrical referent of physical variables. The theory arising from this choice implicitly incorporates 
a length scale. Speaking of geometric content and of nonlocality is substantially the same thing. We can thus 
state that the CM is a theory intrinsically preserving nonlocality. 
In conclusion, the discrete formulation is more appealing than the differential formulation from the physical 
point of view. The CM is also more appealing as far as the discussion on the discrete nature of matter is 
concerned. Actually, since the use of point functions is no longer needed by leaving the differential 
formulation, the CM deals with (discrete) equations that are not in conflict with the discrete nature of matter. 
As previously discussed, a system of dual cells seems to be quite adequate to describe phenomena by 
preserving the geometrical structure of all involved variables. Cell complexes are much more than a domain 
discretization: they are the generalization of the coordinate systems, when the geometrical counterpart of 
physical variables is taken into account. The association of physical variables to elements of a cell complex 
and its dual was introduced by Okada and Onodera (1951) and Branin (1966). In the CM, the strong coupling 
between physical variables and oriented space elements becomes the key to give a direct discrete formulation 
to physical laws of fields. This allows the CM to highlight the geometrical, algebraic and analytical structure 
which is common to different physical theories, leading to a unified description of physics. 
As pointed out by Chen et al. (2000), a meshfree approximation of the Finite Elements Method (FEM) 
possess intrinsic nonlocal properties, since the approximation functions are not locally constructed. Nonlocal 
properties of meshfree approximations are exploited to incorporate an intrinsic length scale which regularizes 
problems with material instabilities. In the CM, a meshfree approach does not directly involve increasing the 
CM intrinsic degree of nonlocality. Actually, only the procedure of mesh building has changed, and not the 
approximations used to achieve the solution. This happens since the CM is very ductile and can be easily 
adapted to a meshfree formulation without having to change the structure of the method. Nevertheless, an 
increased nonlocality degree can occur if the local mesh building leads to local primal meshes which overlap. 
The enrichment of the classical continuum by incorporating nonlocal effects into the constitutive equations is 
often used in differential formulations in order to avoid the ill-posedness of boundary value problems with 
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strain-softening constitutive models. When the material tangent stiffness matrix ceases to be positive 
definite, the governing differential equations may lose ellipticity. FEM solutions of such problems exhibit a 
pathological sensitivity to the element size and do not converge to physically meaningful solutions as the 
mesh is refined (Jirásek 1999). Actually, the boundary value problem does not have a unique solution with 
continuous dependence on the given data (Jirásek and Bažant 2001). To remedy the loss of ellipticity, a 
length scale must be incorporated, implicitly or explicitly, into the material description or the formulation of 
the boundary value problem (Chen et al. 2000). A properly formulated enhancement has a regularizing 
effect, since it acts as a localization limiter that restores the well-posedness of the boundary value problem. 
This happens since the actual width of the zone of localized plastic strain is related to the heterogeneous 
material microstructure and can be correctly predicted only by models having a parameter with the 
dimension of length (Jirásek and Rolshoven 2002). 
Incorporating nonlocal effects into the constitutive equations is required by the use of the differential 
formulation, which is intrinsically local. If the goal is to perform a nonlocal analysis by means of the 
differential formulation, the constitutive equations must necessarily be modified in order to incorporate 
nonlocal effects. If the goal is to perform a nonlocal analysis by means of the CM, no need to modify the 
constitutive equations arises, since the CM is intrinsically nonlocal. The question is not merely which type of 
continuum to associate with a differential or discrete formulation, nonlocal or local, respectively. The 

discussion on nonlocality and locality with reference to the 
differential and discrete formulation takes on a deeper 
meaning. As previously stated, the nonlocal approach arises 
from the absence of a length scale in the differential 
formulation. This is a direct consequence of loosing metric 
notions when performing the limit process. Since physics has 
an intrinsic length scale, the differential equation arising 
from the limit process cannot describe physical phenomena 
properly. Thus, the lost metric notions must be re-entered 
somehow. Nonlocal approaches re-enter the metric notions 
by incorporating a length scale into the constitutive 
equations. This incorporation is not per-se necessary at all. It 

is required by the formulation. What is necessary is to preserve the nonlocality of phenomena. This may be 
achieved by preserving the metric information by means of a discrete formulation. It is then possible to use a 
local constitutive relationship if the numerical simulation is performed by means of the CM. 
Most nonlocal damage formulations lead to a progressive shrinking of the zone in which local strains 

increase (Pijaudier-Cabot and Bažant 1987; Jirásek 
and Zimmermann 1998). The thickness of the zone 
of increasing damage can never be smaller than the 
support diameter of the nonlocal weight function. 
Numerical problems thus occur, when the residual 
stiffness of the material inside this zone becomes 
too small. These numerical problems are all the 
more severe if body forces are present, leading to 
divergence of the equilibrium iteration process. 
Transition from highly localized strains to 
displacement discontinuities embedded in the 
interior of finite elements can be used to remedy the 
loss of convergence when body forces are present 
(Jirásek 1998). As pointed out in Jirásek (1999), 

this approach is appealing from the physical point of view, since in the final stage of the degradation process 
the material should no longer be considered as a continuum. Nevertheless, it is here argued that this 
transition corresponds to a description of the stress field in terms of displacements, and not of strains (Fig. 3). 
Thus, the stress field is not related to the microscopic behavior of the material, but to the macroscopic 
behavior of the structure. Microscopic and macroscopic behavior may differ when the structure is no longer a 
continuum (Ferretti 2004a). This means that the transition is equivalent to introduce a relationship between 
effective stress and effective strain, which not necessarily is strain-softening. If this is the case, the existence 
itself of the strain-softening behavior is not ensured by this approach. In other words, by using the transition 

Fig. 3. Transition from a continuum model to a 
discontinuity (after Jirásek 1999) 

Fig. 4. Comparison between numerical and experimental 
results for compressed specimens 
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is not clear whether a case of strain-softening is actually modeled. Therefore, capturing the correct crack 
trajectory without any numerical instabilities through a transition technique cannot be considered a proof of 
the strain-softening existence. Displacement discontinuity with opening of macroscopic cracks has shown 
itself to be per-se sufficient to model softening branch (Fig. 4) and size effect (Fig. 5) in the load-
displacement diagram of compressed specimens, even if a monotone constitutive law is used (Ferretti 2003b; 
Ferretti and Di Leo 2003). These results have been provided by means of a CM code with intra-element 
propagation and automatic remeshing developed by Ferretti (2003a), which uses the local constitutive law 
shown in Fig. 6. As shown in Fig. 7, the coupling between CM and local monotone law is also able to 
simulate compression tests on concrete cylinders, wrapped with sheets of carbon fiber composites (CFRP). 
The good agreement between numerical and experimental results on wrapped concrete is shown in Ferretti 
and Di Leo (2003). 

Fig. 5. Numerically evaluated size effect on load-
displacement diagrams 

Fig. 6. Monoaxial constitutive law adopted for concrete 
modeling 

Fig. 7. Numerical load-displacement curves for unwrapped 
and CFRP wrapped specimens 

Fig. 8. Dispersion range of the effective properties for 
variable L D  ratio and average curve 

It may be concluded that the softening behavior in load-displacement diagrams attains to the structural 
response and does not necessarily correspond to material softening, whose existence is not guaranteed at all. 
The problem of the existence of strain-softening is actually still an open issue. Recently, a new procedure for 
the identification of the local law of concrete has been proposed (Ferretti 2004b; Ferretti and Di Leo 2003), 
showing that a monotone constitutive law, the effective law, is derived (Fig. 8) if the concrete specimen is 
not considered as a continuum, according to the experimental evidence (Ferretti 2004c). 
A nonlocal model with intra-element propagation aiming at simulating the modified interactions between 
material points, due to cracking, must be able to continuously recompute the interaction weights for all 
interacting pairs of integration points. Recomputation is needed since long-range interaction between 
material points becomes more and more difficult, and finally impossible, as the crack propagates. Thus, the 
interaction length must be decreased as the crack propagates, with high computational burdens. Matters 
would be different if a CM code with intra-element propagation were used (Ferretti 2003a). Actually, since 
the nonlocal approach is implicit into the CM, the modified nonlocal behavior is automatically taken into 
account as the geometry is updated. No further computation is required when an internal point becomes a 
boundary node, due to cracking. 
In Bažant and Chang (1984) and Jirásek and Rolshoven (2002), it was shown that numerical instabilities do 
not occur only if softening laws taking into account both the local and nonlocal effects are used. This means 
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that the principle of the local action of the classical continuum mechanics must somehow be taken into 
account even in a nonlocal approach. This is exactly what happens in a CM code with a local constitutive 
model, being nonlocality ensured by the discrete formulation. The use of a local/nonlocal constitutive model 
in the FEM is thus equivalent to the use of a local constitutive model in the CM. This equivalence is also 
proved by the capability of the CM with local constitutive model of succeeding where classical plasticity 
fails, requiring an improvement of the classical continuum description: modeling the size effect (Fig. 5; 
Ferretti, 2003b). Thus, one of the main historical reason for improving the classical continuum description 
fails if the differential formulation is abandoned in favor of a discrete formulation. 
It must finally be noticed that nonlocal theories aiming at regularizing the localization problem usually 
neglect nonlocal elastic effects, and apply nonlocal averaging only to an internal variable (or thermodynamic 
force) linked to dissipative processes (Jirásek and Rolshoven 2002). This choice is justified on the basis of 
the smooth strain distribution characterizing the elastic regime, leading to a good approximation provided by 
the standard local theory. The implicit nonlocal approach of the CM also allows us to take into account 
nonlocal effects in the elastic regime automatically. This occurs since the CM nonlocality is derived from 
geometrical properties naturally linked to physical variables, and not from dissipative processes. Thus, the 
transition between elastic and strain-localization regimes is no longer critical for the accurateness of the 
numerical analysis. Distinguishing between ante and after strain-localization regime is no longer necessary. 
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