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Abstract. The question of whether concrete strain-softening is a real material 
property is discussed here. The discussion is given from both the physical and the 
analytical point of view. New evaluations of the actual nature of strain-softening 
are added to those existing in literature. 
1. Introduction. The strain-softening of a material is the decline of stress at 
increasing strain. Strain-softening diagrams are obtained from displacement-
controlled compression tests on concrete-like materials. In 1903, Hadamard 
considered strain-softening as an unacceptable feature for a constitutive equation, 
since the compressive wavespeed, V, function of the tangent modulus E and the 
Poisson’s ratio υ  (1), ceases to be real if E becomes negative, as in strain-
softening branches: 
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Even if questionable under certain viewpoints, Hadamard’s observation gave rise 
to the question of whether strain-softening really exists or not. Since then, strain-
softening has been widely regarded as inadmissible by several authors (Bažant, 
1984). The problem of strain-softening in continuum dynamics has been intensely 
discussed in regard to large-scale finite element computations (Bažant and 
Belytschko, 1985). It has been questioned (Bergan, 1983; Hegemier and Read, 
1983; Sandler and Wright, 1983) whether strain-softening in a continuum is a 
sound concept from the mathematical point of view. The question was, whether or 
not strain-softening is a real material property or merely the result of 
inhomogeneous deformation caused by experimental techniques. It was found 
(Sandler and Wright, 1983) that the standard approach interpreting load-
displacement experimental curves with softening as stress-strain curves does not 
lead to a meaningful representation of dynamic continuum problems in a physical 
and mathematical manner. Actually, the stability in the sense of Hadamard (1903), 
i.e., proper-posedness, is not satisfied, since in the softening regime the governing 
equation are elliptic instead of hyperbolic. A review of the most relevant studies 
on strain-softening existence is given in Ferretti and Di Leo (2003). In particular, 
Hudson et al. (1971) suggested that softening is not a material property, but is 
essentially due to scaling the applied force by the original cross-sectional area 
rather than the actual cross-sectional area. Also the other studies mentioned here 
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share the common idea of the non constitutive nature of strain-softening. 
Nevertheless, they were not able to provide an identifying procedure from the 
experimental data to a monotonic constitutive law for concrete. They treated the 
problem from the theoretical viewpoint only, since it was estimated (Hegemier 
and Read, 1983) to be extremely difficult, if not impossible, to track the effective 
cross-sectional area experimentally at each stage of the failure process. The 
impossibility of achieving a new constitutive proposal is the main reason for 
which this field of research rapidly fell out of favor. The aim of the present work 
is to further investigate the actual nature of strain-softening, from the physical and 
the analytical points of view. A suggestion on constitutive relations is also given 
by Ferretti (2001), based on a new analysis of experimental data. 
2. Strain-softening existence: physical point of view. In order to derive a 
constitutive law in uniaxial compression from experimental data, it is a common 
practice to define the average stress σ  and the average strain ε  as shown in Fig. 
1, and to assume a uniform state of stress and strain in the specimen. With this 
assumption, the average stress and strain are equal, respectively, to the stress and 
strain at a generic point, σ  and ε  (Fig. 1). Evaluating the average quantities is 
thus considered equivalent to performing the limit process of the corresponding 
difference quotients. In this case, the σ -ε  relationship in Fig. 1 represents the 
uniaxial constitutive law for monotonic strain processes. This relationship is 
considered to be representative of the mechanical behavior of the material. 
 

Figure 1. Traditional identification of uniaxial constitutive law by experimental tests. 
 
However, one can make the following remarks: 
1. The σ -ε  law in Fig. 1 is size- and shape-effect sensitive, while a constitutive 

law should not exhibit either a size-, or a shape-effect. 
2. The identification procedure in Fig. 1 consists of a mere change of scale. 

Thus, N-u and σ -ε  curves are homothetic, that is, identical in shape. In 
particular, they both exhibit a softening behavior. The softening behavior in 
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the N-u relationship has a well known physical meaning, linked to the 
structure instability. Since any structural property is no longer definable when 
the structural dimensions tend to zero, it is not clear what a softening branch 
could represent in the curve of the material response (σ -ε  curve), which is 
defined in the point. In other words, the concept of structural instability is 
associated with a certain body configuration. Extrapolation of this concept to a 
point property is not formally correct, since a configuration is not definable 
for the point. If some type of instability arises in the point, it would be not 
necessarily associated with strain-softening. On the other hand, the lack of 
stress uniqueness involved by strain-softening does not seem to be reasonable 
for a law describing a constitutive behavior. A biunique relationship between 
stress and strain is expected in such a type of relationship. 

These inconsistencies come from the impossibility of performing mechanical tests 
directly on the material (Ferretti and Carli, 1999): the object of testing is never the 
material, but a specimen, that is to say, a structure interacting with the test-
machine (Fig. 1). Thus, experimental results (N-u) characterize the behavior of the 
specimen-test machine system, while they are not at all representative of the 
constitutive behavior of the material. In particular, the softening branch has a 
meaning that is only linked to the structural instability. This branch cannot 
provide information on the material behavior, but through an identifying model. 
 

Figure 2. Schematization of an experimental test: uniaxial compression case. 
 
To identify constitutive laws starting from experimental results, it is therefore 
necessary to evaluate all factors influencing a test result R, the known output of 
our identifying problem with unknown inputs (Fig. 2). Among these inputs, there 
is the constitutive behavior C, which is unknown in value. The other contributions 
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come from the structural nature of the specimen and are unknown also in kind and 
number. The knowledge of f, the function relating R to all the unknown inputs 
(Fig. 2), is fundamental to establish a relationship between R and C, the input to 
identify. The C identification places then as a typical inverse problem. As most of 
the inputs are unknown in kind and number, the definition of a model is required 
to establish the correlation between C and R. In the model here adopted, it has 
been assumed that the main factors influencing R are four: constitutive properties 
(C), development of failure patterns changing the structural scheme (S), 
interactions between test-machine and specimen (I), and response time of the test-
machine (M): 
 R C S I M= + + + . (2) 
A qualitative representation of the four main factors for different load-steps is 
shown in Fig. 3. The repartition of R in Fig. 3 is consistent with the experimental 
evidence. Concerning this figure, it must be incidentally recalled that a stabilizing 
cycle is an unloading-reloading cycle effectuated for a preloading equal to about 
the 10% of the maximum presumed load. The stabilizing cycle is done in order to 
limit the influence of I and M on R at the beginning of the test. 
It is therefore necessary to define an identifying procedure from experimental data 
to material behavior (inverse problem), which is not affected by the remarks 
concerning the approach of Fig. 1. In particular, it has been previously argued that 
strain-softening does not seem to be reasonable in a constitutive law. Thus, a 
monotonic non-decreasing law can be expected to characterize the constitutive 
behavior of concrete. This analysis gives us a valid reason for a critical 
assessment of the problem of the existence of strain-softening. As in Hudson et al. 
(1971), also in the present work it was supposed that strain-softening is not a 
material property, but is essentially due to scaling the applied force by the original 
cross-sectional area rather than the actual cross-sectional area. 
 

Figure 3. Qualitative repartition of R at the beginning without stabilizing cycle (a'), at the beginning with 
stabilizing cycle (a''), at an intermediate load step (b), and at the end of the test (c). 
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From similar considerations, Rosati and Natali Sora (2001) proposed a complete 
response curve for concrete loaded in tension. They also assumed that, during 
crack propagation, the specimen behaves similarly to a structure interacting with 
the test machine, and its combination of behavior is not the constitutive behavior 
of the material. They also stated that the descending branch measured in a direct-
tension test cannot be considered as a pure material property, but is a combination 
of constitutive and structural behaviors. They derived the constitutive law for 
solid concrete by a parametric analysis. In contrast, no assumption on the 
formulation of the constitutive law is made in the present approach. 

2.1. Resistant area and effective stress. We denote CK , SK , IK , and MK  
the weighed contributions to R assumed by C, S, I, and M (Fig. 3): 

 CC K R= ,     SS K R= ,     II K R= ,     MM K R= . (3) 
With this position, it follows that 1C S I MK K K K+ + + = . 
In the aim to evaluate the relationship between C and R (Fig. 2), we group all the 
weighed contributions except the constitutive one into one factor K: 
 S I MK K K K= + + . (4) 
From the identifying procedure in Fig. 1 it follows that: 
 C R≡ . (5) 
With the position in (4), (5) is replaced by the relationship: 
 ( ) ( )1 1C S I MC K R K K K R K R= = − − − = − . (6) 
The last equality in (6) allows evaluation of the constitutive properties, taking into 
account the behavior of the specimen-test machine system by means of K. This 
approach is formally more correct than the approach in (5). Nevertheless, it is not 
of immediate use for identifying constitutive properties, since ( )C CK K R= , 

( )S SK K R= , ( )I IK K R= , and ( )M MK K R=  are load-step functions (Fig. 3). 
That is to say, K is a load-step function, and not a constant of the performing test: 
 ( )K K R= . (7) 
In conclusion, it is not possible to establish a homothetic correspondence between 
the experimental N-u relationship and the uniaxial constitutive one. Therefore, the 
identified curve may not have the softening behavior of the experimental curve. 
Moreover, K can only be estimated, with regard to the material scale, since it 
includes factors that are not directly quantifiable. The material law following from 
the identification process will be termed the effective, and not the constitutive, in 
order to emphasize the non-measurability of K. A qualitative analysis of CK , SK , 

IK , and MK  in compressed concrete cylinders showed that SK K≅  except the 
very end of the test (Ferretti, 2001; Fig. 3). Thus, the large structural scheme 
variation following from the propagation of dominant bi-cone shaped cracks (Fig. 
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4) is preponderant in comparison to the other addends in (4). To identify the scale 
factor of the σ  axis with respect to the N axis (Fig. 1), it is fundamental to 
introduce a parameter whose dimensions are those of an area and whose 
incremental law is linked to the structural scheme variation. In the following, this 
parameter will be termed the resistant area resA . Thus, any specimen can be 
regarded as consisting of a resistant structure (Fig. 4), in which crack propagation 
never occurred, and a volume of incoherent material. The bi-cone shaped cracks 
separating the resistant structure from the incoherent material do not occur 
abruptly, but progressively develop from the very beginning of the test forth. 
Here, we suggest to estimate the progressive 
percentage decrement of area due to crack 
propagation by means of the scalar D: 

 n res

n

A AD
A
−

= . (8) 

By means of Eq. 8, the resistant area can be 
expressed as: 
 ( )1res nA A D= − . (9) 
The effective stress has been defined as the 
average stress acting on the area resA : 

Figure 4. Resistant structure at the 
end of the test. 

 eff resN Aσ = . (10) 
Alternatively, the effective stress can be expressed as: 
 eff n resA Aσ σ= . (11) 

3. Strain-softening existence: an analytical point of view. The sign of the 
effective stress derivative in the effσ -ε  plane is discussed here. In (10), we make 
explicit the dependence of effσ , resA , N e D on the displacement u: 

 ( ) ( ) ( )eff resu N u A uσ = . (12) 
Now, find the derivative of Eq. (12) with respect to the variable ε : 
 ( ) 2

eff eff res res resd d du d H N A NA Aσ ε σ ε′ ′ ′= = − . (13) 
The superscript indicates derivation with respect to u, and H is the gauge length: 
 u Hε= . (14) 
Said û  is the displacement corresponding to the maximum load, it follows that: 
 ( ) maxˆu u

N u N
=
= . (15) 

As to the discussion of the sign of Eq. (13), it can be stated that: 
• N is monotonic non-decreasing until the peak ( 0N ′ ≥ , ˆ0 u u≤ ≤ ), and 

monotonic strictly non-increasing beyond the peak ( 0N ′ < , ˆu u> ); 
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• resA  is monotonic non-increasing in all the domain ( 0resA′ ≤ , for all u ), and 
can have a zero tangent only in a neighborhood of the origin, corresponding to 
the linear elastic state of the material. 

For Eq. (9), the assumption of monotonic behavior for resA  involves a condition 
of monotonic behavior for the law describing the scalar ( )D D u= . 
The experimental results agree with the condition of non zero tangent of resA  and 
D for ˆu u= , since the crack propagation rate near ˆu u=  is always very fast: 
 ˆ 0res u u

A
=

′ ≠ ,          ˆ 0
u u

D
=

′ ≠ . (16) 
It immediately follows that the numerator in Eq. (13) is strictly positive for 

ˆ0 u u≤ ≤ . Then, the sign of effd dσ ε  is strictly positive for ˆ0 u u≤ ≤ : 
 0effd dσ ε >           ˆ0 u u≤ ≤ . (17) 
In particular, for ˆu u=  the Eq. (13) assumes the value of: 
 2

ˆ
0eff res resu u

d d NH A Aσ ε
=

′= − > , (18) 

The strict inequality comes from (16). Eq. (17), implies the following important 
result: a point with strictly positive tangent in the effσ -ε  curve corresponds to the 
point with zero tangent in the N-u curve. This is a notable result, since it is 
obtained without having introduced any other assumptions on the shape of the law 
describing the decrement of resA , except the physically justifiable condition of 
non zero tangent in correspondence of the maximum load. It can easily be 
demonstrated how the same result for the sign of the tangent can be transposed to 
the effσ - effε  curve, at the point corresponding to the ˆu u=  point of the N-u curve. 
As far as the sign of Eq. (13) for ˆu u>  is concerned, it depends on the value of ρ, 
the ratio between the two terms in the numerator of Eq. (13): 
 res resN A NAρ ′ ′= . (19) 
The result is: 
 0effd dσ ε ≥           for all ˆu u> , 0 1ρ≤ ≤  (20′) 
 0effd dσ ε <           for all ˆu u> , 1ρ > . (20″) 
One can also examine the sign for ˆu u>  of the derivative of q, defined as follows: 

 
( )9

max

max

res

neff

A Nq
A N

σ
σ

= = . (21) 

Thus, q is the ratio between the normalized resistant area and the normalized load. 
It follows that: 
 ( )2 2

max maxeff eff res resq N A NA Nσ σ σ σ′ ′ ′ ′= − = − − . (22) 
From (22) it can be observed that the sign of q′  is determined by ρ: 
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 0q′ >           for all ˆu u> , 1ρ > ; (23′) 
 0q′ ≤           for all ˆu u> , 0 1ρ≤ ≤ . (23″) 
On the other hand, the sign of q′  follows directly from Eqs. (20) and the first 
equality in Eq. (22), which states that q′  and effσ ′  have opposite signs for all u . In 
conclusion, the sign of effd dσ ε  is surely positive for ˆ0 u u≤ ≤ , whereas it is 
only known when the law describing D is known for ˆu u> . A proposal to 
experimentally acquire D is provided in Ferretti (2001). From these acquisitions, a 
monotone non-decreasing effective was found for all u . 
4. Conclusions. A concrete specimen under uniaxial monotonic compression in 
displacement-control is characterized by load (N)-displacement (u) diagrams with 
softening. During loading, the specimen exhibits a crack propagation pattern 
depending on its structural nature and interaction with the test-machine. The N-u 
diagram itself is affected by the structural nature of the specimen and interaction, 
since crack propagation modifies the resistant structure. Considering the specimen 
as a structure interacting with the test-machine, it was demonstrated that the effσ -

effε  curve has a strictly positive derivative at the point corresponding to the peak 
of the σ -ε  curve. Contrary to what has been traditionally asserted, thus, at this 
point material instability does not occur. This result is independent from the law 
describing the decrement of resistant area. On the contrary, whether material 
instability actually occurs for larger strains depends on the shape of the this law. 
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