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ABSTRACT

The discrete gradient method is proposed as a novel numerical tool to perform

solid mechanics analysis directly on point-cloud models without converting the models

into a finite element mesh. This method does not introduce continuous approximation

of the primary unknown field variables; instead, it computes the gradients of the

field variables at a node using discrete differentials involving a set of neighboring

nodes. The discrete gradients are substituted into Galerkin weak from to derive the

algebraic governing equations for further analysis. Therefore, the formulation renders

a completely discrete computation that can conduct mechanical analysis on point-

cloud representations of patient-specific organs without resorting to finite element

method.

Since the method is prone to rank-deficient instability, a stabilized scheme is

developed by employing penalty that involves a minor modification to the method.

The difference between nodal strain and subcell strain is penalized to prevent the

appearance of zero average strain.

This dissertation delineates the theoretical underpins of the method and pro-

vides a detailed description of its implementation in two and three-dimensional elas-

ticity problem. Several benchmark numerical tests are presented to demonstrate

the accuracy, convergence, and capability of dealing with compressibility and incom-

pressibility constraint without severe locking. An efficient method is also developed

to automatically extract point-cloud models from medical images. Two and three-

dimensional examples of biomedical applications are presented too.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

Medical imaging technologies such as computed tomography (CT), magnetic

resonance imaging (MRI) and ultrasonic imaging (UI) can provide anatomically ac-

curate geometric information of internal organs. Pixel or voxel data from the medical

images provide a point-cloud depiction for complicated anatomies that are difficult to

describe in CAD geometry. Traditionally, a point-cloud model needs to be converted

into finite element mesh to perform mechanical analysis. However, generating high

quality meshes in complicated bodies remains a challenge although meshing gener-

ation tools have been significantly improved over the last decades. Therefore, the

application of finite element method (FEM) has been limited in this filed.

Another technique, called voxel finite element method (VFEM), directly con-

verts image voxels to eight node hexahedral elements [49, 54, 58, 101]. However, the

jagged surfaces lead to inaccurate strain and stress at nodes corresponding to cor-

ners. Moreover, the un-smoothed geometry with sharp geometrical discontinuities

might cause numerical problems such as convergence and accuracy [71]. To overcome

this shortcoming, some techniques of smoothing surface were adopted [16, 22]. In

addition, algorithms were developed to march cubes with tetrahedrons for smooth

surface [48, 68, 78]. However, with such extra process, it is not possible directly to

transfer CT voxels to hexahedral elements. On the other hand, the tetrahedral ele-

ment may be of disadvantage in terms of accuracy.
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To circumvent this restriction, several methodologies have been intensively

pursued to perform image-based analysis directly on domains represented by point-

clouds as happen in medical images without converting the model into a finite element

mesh [30,31,35].

The first family of methods, which have gained great popularity, are meshfree

method, e.g., [2, 10, 37, 67, 72]. The meshfree methods construct smooth approxi-

mations over a set of scattered nodes that have no particular topological connec-

tions or element structure required to construct approximations. Therefore, meshfree

methods present significant advances over the finite element method in the issue

of meshing generation and relating applications such as moving discontinuities and

large deformation. However, except for a few formulations, most meshfree meth-

ods still face algorithmic difficulties related to the loss of interpolatory property

in the approximation, or the requirement of higher-order quadrature rules in nu-

merical integration. Some formulations such as smoothed particle hydrodynamics

method [12, 50, 69, 74–77] does not satisfy the linear consistency requirement. More-

over, most meshfree Galerkin methods require background cell for integrating the

weak form. The accuracy as well as the stability will be influenced by the selection

of Gauss quadrature points [9,38,95,96]. On the other hand, most meshfree methods

involve the construction of implicit functions so that the numerical computation is

much more expensive than explicit interpolation based finite element method.

Another family of methods that can render a fully meshfree computation are

discrete difference methods including the finite difference methods [39, 63, 81, 86, 98]
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and some finite volume methods [4,42,44,55,79], which have been used in numerical

solution of differential equations. They are fully discrete in the sense that both the

domain and the unknown are represented by discrete quantities. These methods do

not construct continuous approximation of the unknown field. Instead, the unknown

variables and its derivatives are discretized into either nodes or volumes or the so-

called storage points.

Finite difference methods (FDM) or finite volume methods (FVM) have their

own limitations when they are applied with point-cloud models. First, it is hard to

solve high order partial differential equation using FDM because of the difficulty to

approximate high order differential operators. Second, classic FDM or FVM works

well just for structured mesh although there are some developments to extend such

methods to unstructured grids [19–21, 56, 57, 62–64, 70, 83]. Algorithms working on

irregular grids need special treatment to define the stencils and approximate differen-

tials. Most existing works in this area were devoted to the selection of computation

cell and difference schemes because computational cell must be carefully chosen to

avoid singularity and losing of accuracy. In addition, finite difference methods were

mostly carried out for strong form [81], the weak form formulations have not been

adequately investigated [19, 42, 44, 82]. To develop a rigorous weak form discrete

method, issues such as discretization, consistency, stability and patch tests need to

be carefully addressed.

The motivation for my work in this dissertation arises partially from the emerg-

ing field of image-based, patient-specific biomechanical analysis. A discrete solver
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that interfaces seamlessly with discrete point-cloud models would be more desirable.

Therefore, the aims of this dissertation is to

1. develop a discrete solver in the framework of weak form;

2. provide a discrete method relying on automatic domain tessellation;

3. derive approximation of gradient over arbitrarily scatted nodes;

4. demonstrate the accuracy and efficiency of the new method;

5. implement the new methods with point-cloud models derived from medical im-

ages.

1.2 Outline of this thesis

The dissertation is organized as follow.

In Chapter 2, several tessellation approaches, which are employed in this dis-

sertation, are introduced. Some existing discrete differential methods, newly proposed

natural element method and nodal integration method are reviewed.

In Chapter 3, the fundamental concept of discrete gradient is introduced. The

framework of the discrete Galerkin formulation throughout this dissertation is intro-

duced. The linear consistency condition for approximation is deduced. The issue of

patch test, which has been overlooked in previous contributions, is addressed.

In Chapter 4, Voronoi cell discrete gradient method is presented. The imple-

mentation of this method in linear elasticity, followed by the extension to geometri-

cally nonlinear problems, is described. A proof that the method satisfies the linear



5

displacement patch test is provided .

Chapter 5 introduces a bacrycentric discrete gradient method. It begins with

the introduction of barycentric division over domain, followed by a discussion on its

properties. Proofs of linear consistency and satisfaction of patch test are presented.

In Chapter 6, we present the numerical results of some benchmark tests to

validate the accuracy and convergence of newly proposed method in elasticity and

finite strain formulations.

In Chapter 7, we present a stabilized discrete method over polygon mesh. The

subcell strain and a modified from of strain energy are proposed to prevent spurious

modes. The stabilization formulation under the framework of Galerkin weak form is

deduced. A one-dimensional example is discussed to exhibit the existence of spurious

mode. Several benchmark numerical tests are presented to demonstrate the properties

of the method.

In chapter 8, the discrete stress analysis on point-cloud models in biomechanics

is introduced. To fulfill the discrete analysis, we develop an efficient method to extract

point-cloud model from medical images. Details of implementation are demonstrated

in two and three dimensional examples.

In chapter 9, conclusion remarks are mode to summary the work in this dis-

sertation.



6

CHAPTER 2
AN OVERVIEW ON DERIVATIVE APPROXIMATION METHODS

This chapter, we review some existing methods that approximate derivative

over scatted nodes. Although different discrete approximations employ various algo-

rithms, they share a fundamental feature, which the computational domain is first

tessellated into a collection of cells that completely cover the domain and the created

cells can define relationships among nodes. Therefore, in this chapter, we start with

the introduction of tessellation of domain. Then, several differential approximation

methods are shortly introduced.

2.1 Tessellations of a domain

In the finite element method, the elements provide a way of dividing the do-

main. Approximation techniques use explicit shape functions to rebuild field variables

in each element formed by fixed nodes. This type of interpolation is termed station-

ary element based interpolation. However, when the spatial discretiztion lacks an

element framework, the field variables and their derivatives at an arbitrary node have

to be approximated by using a group of field nodes in a local domain. Hereby, those

nodes included in the interpolation are considered as supporting nodes. In addition,

the small local domain containing those supporting nodes is influence domain. The

accuracy of interpolation upon the node of interest depends on all supporting nodes.

Therefore, a suitable supporting domain should be chosen to ensure an efficient and

accurate approximation. Evidently, different tessellations method of a domain may

lead to various interpolating process. In our work, computational domain is required
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to be automatically tessellated into a collection of non-overlapping cells that com-

pletely cover the domain. Mathematically, a domain Ω that originally contains N

nodes is partitioned into N cells. If the cell associated with the node I is denote by

ΩI , then, obviously, ΩI ∩ ΩJ = ∅ if I 6= J , and ∪N
I=1ΩI = Ω. For subsequent use, we

also introduce the following notations:

nodes(ΩI) : The nodal set of the cell I including node I;

NI : nodes(ΩI)\I, all supporting nodes of node I;

AI : The area of cell ΩI .

In future chapters, we mainly consider four kinds of tessellation: Voronoi diagram,

Delaunay triangulation, quadrilateral and random polygons.

Voronoi diagram is a geometric construction that decomposes a domain in

Euclidean space into non-overlapping cells according to distances among a given set

of scattered nodes. For simplicity of exposition, we describe the tessellation in two-

dimensional space. Given a set of nodes {X1, X2, · · · , XN} in a plane, the Voronoi

cell V(I) associated with node XI is defined as

V(I) = {X ∈ R2 : d(X,XI) < d(X,XJ) ∀J 6= I}, (2.1)

where d is the Euclidean distance. Each cell is obviously the convex polygon formed

by the intersection of finitely many open half spaces, each being delimited by the

perpendicular bisecting plane of the line segments connecting XI and other nodes.
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Delaunay triangulation is dual of Voronoi diagram. In computational geom-

etry, a Delaunay triangulation for a set N of points in the plane is a triangulation

DT (N) such that no point in N is inside the circumcircle of any triangle in DT (N).

Boris Delaunay invented the triangulation in 1934. This is the original definition for

two-dimensional spaces. However, it is possible to use it in three-dimensional spaces

by using a circumscribed sphere in place of the circumcircle. Delaunay triangulations

are often used to build meshes for the finite element method, because of the Delaunay

triangulation maximize the minimum angle of all the angles of the triangles in the

triangulation.

Quadrilateral and polygons tessellation can be considered as the expansion of

triangular partition because they all can be divided into triangles.

2.2 Finite difference method and finite volume method

The finite difference methods [39, 63, 81] approximate the derivatives using

algebraic expressions relating nodal values without providing information about the

distribution of unknown variable among nodes. Most finite difference formulations

follow a collocation procedure where the derivatives in the strong form are replaced

by finite difference approximations [81]. An alternative approach, the idea of using

discrete differential operators in a weak form or energy method, has been proposed in

the early studies on computational structural mechanics. Bushell [19], Johnson [57],

Jensen [56] and Pavlin [82] introduced weak form based finite difference implementa-

tions for plate and shell problems. Recently, Hao et al [53] proposed a moving particle

finite element method, in which the gradient operator is directly approximated, and
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is substituted to a weak form. Eymard et al [42,44] investigated a discrete weak-form

formulation for the Laplace equation in the context of the finite volume methods.

In the 1960s, Tichonon and Samarskii et al [86, 98] introduced the concept of

finite volume methods. ”Finite volume” refers to the small volume surrounding each

node point. The finite volume methods employ a volume average of the strong form

to derive the discrete equations [4,42–44,55,79]. These methods are proved to be well

suited to deal with physical conservation laws. Being free from an underlying con-

tinuous approximation, these methods do not need meshing, and are in general more

efficient numerically. Some of the notable features of the finite volume methods are

that it is applicable to arbitrary geometries and it may use structured or unstructured

meshes [20,21]. In addition, this method leads to robust schemes.

2.3 Discrete differential operators on non-uniform grid

The numerical computation of difference approximations on non-uniform grids

is used for the solution of partial differential equations, or in data fitting. Although

classic finite difference schemes are typically based on regular grids, techniques have

been proposed to derive finite difference operators over arbitrarily scattered nodes

since 1970s [19,56,57,62–64,70,83]. Jensen [56] and Liszka et at [62–64] took another

path and proposed a generalized finite difference method (GFDM) on irregular grids

through appropriate computational cell (star-shaped domain).

A number of applications in various second order boundary value problems had

been discussed, and primary contributions focused on finite difference algorithms over

irregular grids [83]. Jensen et al [56] used the Taylor series expansions to obtain finite



10

difference formulas approximating derivatives up to the second order. Baty and Villon

et al [5] used least squares method, whereas Breitkopf et al [17, 18] adopted moving

least squares approximation to solve elliptic problems on arbitrary irregular grids.

Onate et at [39, 80, 81] presented a particle method called free finite point method

(FPM) to solve convection-diffusion and fluid flow type problems. The approach was

based on a weighted least square interpolation of point data and point collocation for

evaluation the approximation integrals. Recently, Tonti [100], Cosmi [28] and Ferretti

[45] developed discrete formulations in solid mechanics. Their works indicated that

discrete formulations can anatomically preserve some key properties of the physical

problem.

2.4 Natural neighbor based interpolation

The notions of natural neighbors and natural neighbor interpolation were in-

troduced by Sibson et at [87] as a means for data fitting and smoothing. Consider a

set of scattered nodes N and its Voronoi diagram V(N). If the Voronoi cell for node

I and P has a common facet, then the node I is said to be a natural neighbor of node

P .

The natural neighbor co-ordinates are used as the interpolating functions in

natural neighbor interpolation or Sibson interpolation. As shown in Figure 2.1(a),

the natural neighbor coordinates of P with respect to a neighbor I is defined by the

ratio of area measure in R2 :

φI(x) =
AI(x)

A(x)
, A(x) =

NI∑
J

AJ(x),
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where AI(x) is the area of overlap between the first-order Voronoi cells of node P and

I, A(x) is the area of the first-order Voronoi cell of P . Natural neighbor interpolation

has primarily been used in the area of data interpolation and modelling of geophysical

phenomena.

I
1
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b

c d
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J

h

s

J

J

(b)

Figure 2.1: Natural neighbor-based interpolants. (a) Sibson interpolant; (b) Laplace
interpolant.

Belikov et at [7] proposed a new natural neighbor based interpolant referred

as non-Sibsonian interpolant. Let VI be the Voronoi cell associated with node I, tIJ

be the common facet that is shared by VI and VJ and |tIJ | denotes the Lebesgue

measure of tIJ . If node I has n natural neighbor, then its non-Sibsonian shape

function is defined as

φI(x) =
αI(x)∑n
J αJ(x)

, αJ(x) =
|tJ(x)|
hJ(x)

, (2.2)
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where hJ(x) is the Euclidean distance between node I and its natural neighbor as

plotted in Figure 2.1(b). Therefore, αI(x) is the weight function.

For Sibson and non-Sibsonian shape functions, they have several nice proper-

ties as following:

1. positivity 0 ≤ φI(x) ≤ 1 ;

2. Kronecker-Delta property φI(xJ) = δIJ ;

3. partition of unity
∑n

I φI(x) = 1 ;

4. linear consistency x =
∑n

I φI(x)xI .

The natural element method (NEM) is a Galerkin method for the solution of

partial differential equations developed by Sukumar [30, 31, 90, 92, 93]. The approxi-

mation of this method is based on Sibson or Non-Sibson interpolation [7, 8, 87] over

natural neighbor co-ordinates.

Sukumar et al [90], Eymard et al [44] proposed a Voronoi cell finite difference

method to discrete differential operators, in which Sukumar adopted the Voronoi cell

and natural neighbors to study difference approximations for the diffusion operators.

Consider Laplace equation

Lu(x) = ∇ · (∇u(x)) = f(x) in Ω

u(x) = g(x) on ∂Ω,

(2.3)

where ∇ is the gradient operator, ∂Ω is the boundary of Ω. The discrete form of
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above equation is

Lhu(xI) = ∇ · (∇u(xI)) = f(xI) xI ∈ Ω

u(xI) = g(xI) xI ∈ ∂Ω,

(2.4)

Now we can proceed to find the discrete approximation for the Laplace operator at

node I. The starting point is the balance law and Gauss’s theorem.

(Lhu)I = lim
AI→0

∫
∂AI

∇u · ndΓ∫
AI

dΩ
= lim

AI→0

∫
∂AI

∂u
∂n

dΓ

AI

, (2.5)

where AI is the area of the Voronoi cell of node I.

On using a simple central difference approximation of the derivative of u nor-

mal to the Voronoi edge, the above equation can be written as:

(Lhu)I = lim
AI→0

∫
∂AI

∂u
∂n

dΓ

AI

≈ 1

AI

m∑
J=1

uJ − uI

hIJ

sIJ , (2.6)

where m is the number of natural neighbors for node I, hIJ is the distance between

node I and J , sIJ is the length of the Voronoi edge associated with node I and J .

Using Equation (2.6) and after some algebraic simplification, the approximation for

Laplace operator is

(Lhu)I =
1

AI

[(
m∑

J=1

αIJuIJ)− αIuI ],

αIJ =
sIJ

hIJ

, αI =
m∑

J=1

αIJ , AI =
1

4

m∑
J=1

sIJhIJ .

(2.7)
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The above expression is consistent with the prescription introduced for the discrete

Laplace on a random lattice.

As Sukumar mentioned in [91], the advantages of this approach are two-fold.

First, natural neighbor provides a simple means to determine uniquely the neighbors

for point. The Voronoi cells also provide a weight function for each neighbor. Second,

natural neighbor-based interpolation is a local approximation that is well defined at

all points in the domain. The computational costs involved in the construction of

the interpolant are also minimal since only algebraic calculations are required in the

evaluation of the discrete differential operators.

Sukumar et al [94] extended the natural neighbor method to convex polygons

and named it as conforming polygonal finite elements. By referring the concepts of

generalized barycentric coordinates [73] and mean value coordinate [46, 47], Suku-

mar proposed a conforming approximation using natural neighbor interpolant and

extended the potential application of finite element to convex polygons of arbitrary

order.

2.5 Nodal integration methods

Nodal integration methods were initially motivated by the need of eliminating

the integration mesh in meshfree methods [6, 14, 25, 26, 51, 102, 103]. Some finite

element methods, such as node-based average strain finite element methods [13,15,36]

and smoothed finite element method [65,66], share the similar idea. Strictly speaking,

nodal integration only evaluates strain or stress at the nodes and is a form of particle

method. These particle methods offer a Lagrangian solution to very large deformation
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problems.

Chen et al. [25, 26] introduced a nodal average strain computed from the nu-

merical average of the continuum strain over Voronoi cell inclosing the node as shown

in Figure 2.2(a). The nodal area AI is computed over nodal domain ΩI defined by

Voronoi diagram, the nodal strain is computed as

(εh)I =
1

AI

∫

∂ΩI

1

2
(u⊗ n + n⊗ u)dΓ, (2.8)

where n is the cell wall normal. The strain smoothing avoids evaluating derivatives of

meshfree shape functions at nodes and thus eliminates spurious modes. The procedure

was later extended to natural neighbor finite elements [103].

The average strain finite element methods compute average volumetric strains

or strains at nodes based on surrounding element. It was motivated by the desire

to improve the performance of lower order elements in the incompressibility limit.

This method was believed that the nodal integration, in which the number of inte-

gration points exactly matches the number of nodes, offers an optimal equations-to-

constraints ratio [61]. Existing studies focused mainly on linear triangle element (2D)

and linear tetrahedron element (3D). In these elements, the strains are constant, and

the nodal strain can simply be taken as a weighted average of the element strains. To

use linear tetrahedral elements even in large strain incompressible situations, Bonet

et al. [13] presented a simple technique that is based on the definition of nodal vol-

umes leading to a nodal pressure that is averaged over the elements. Referring Figure
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2.2(b), the set elem(I) is defined to be the group of tetrahedral element common to

nodal I. Therefore, the nodal cell volume attached to node I can be defined as

VI =
∑

e∈elem(I)

Ve,

where Ve is one fourth of the area of tetrahedral element e. Dohrmann [36] developed

this idea and formulated the average small strain finite element methods by processing

nodal average to the whole strain tensor rather than just the volumetric component.

The displacement gradient of element e is (∇hu)e, and the strain is (εh)e = (∇h
su)e,

where ∇s is the symmetric part. Therefore, the average nodal gradient (∇hu)I and

strain (εh)I are defined as

(∇hu)I =
1

VI

∑

e∈elem(I)

Ve∇hue or (εh)I =
1

VI

∑

e∈elem(I)

Veε
h
e . (2.9)

The nodal averaging method requires the strain εh
e to be computed within each tri-

angle element e first. Furthermore, Bonet [15] extend the formulation proposed by

Dohrmann to the large strain regime by using the deformation gradient tensor as the

main kinematic variable.

Recently, Krysl and Zhu [61] developed average strain formulation for a quadri-

lateral mesh, in which the nodal strain was derived from a variational setting. Puso

and Solberg [85] studied the stability of nodal average strain linear tetrahedron, and

proposed a stabilized formulation. Conceivably, the same way may also be applied to

polygon elements [94].
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Figure 2.2: Voronoi cell and subcells.

The aspects of stability, consistency and explicit time integration in both

element-based and meshfree-based nodal integration methods are discussed in a recent

publication [84].
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CHAPTER 3
DISCRETE GRADIENT GALERKIN METHOD

3.1 Discrete gradient and gradient interpolants

The idea to discrete gradient over cells usually is employed by finite difference

methods or finite volume methods. Taylor expansion, least squares method and

Green-Gauss method [33,34] are candidates of such kind of methods. After partition

of domain, approximations can be defined over cells. For example, the Green-Gauss

method linearly reconstructs gradient as

∫

Ω

∇uda =
∑
J∈NI

3

2
(uI + uJ)υIJ , (3.1)

where υIJ =
∫ x

J+1
2

x
J− 1

2

nds represents integrated normal along cell’s edges, see Figure 3.1

J+1

J-1 J

I

x

x

J -

J +

1_
2

1_
2

n

n

Figure 3.1: Nodal cell demarcated by median segments of triangles incident to the
vertex I with cyclically indexed neighbors
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Follow the same path, we will develop algorithms for computing average gra-

dient over a finite cell by providing an interpolating formula of the form

(∇hu)I =
∑

J∈nodes(ΩI)

R∗
IJuJ , (3.2)

where R∗
IJ is the gradient interpolant associated with node parameters uJ . This

derivation replies on geometric constructions to identify the computational cells firstly.

It is evident that different cell definitions lead to various computation of gradient in-

terpolants. Detailed schemes will be discussed in Chapter 4 and 5. Its computational

structure is similar to node-based average strain finite element methods [13, 15, 36],

nodal integration methods [6,25,26,103], and smoothed finite element method [65,66].

3.2 Linear consistency condition for gradient interpolants

For second order physical problems such as elasticity and heat conduction,

the basic requirement on the discrete operator (3.2) is the linear consistency. It

means that the discrete gradient can exactly reproduce the gradient of an arbitrary

linear function. This linear consistency condition, sometimes, is called first-order

consistency in R3 space. Consider the function ulin = a0+a1X+a2Y , where a0, a1, a2

are arbitrary constants. In vector form we write ulin = a0+a·X where a = a1ex+a2ey

and X = Xex+Y ey. The linear consistency condition requires that (∇hu)I = ∇ulin =

a when the nodal values are assigned according to uJ = a0 + a ·XJ . Substituting the
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nodal values into (3.2), we see that the linear consistency infers

(∇hulin)I =

[ ∑

J∈nodes(ΩI)

R∗
IJ

]
a0 +

[ ∑

J∈nodes(ΩI)

R∗
IJ ⊗XJ

]
a = a ∀a0 ∈ R, a ∈ R2.

(3.3)

Evidently, the condition is satisfied if and only if

∑

J∈nodes(ΩI)

R∗
IJ = 0,

∑

J∈nodes(ΩI)

R∗
IJ ⊗XJ = I.

(3.4)

These are the discrete form of the derivative consistency conditions recorded in [59,60]

and [53]. Here, “⊗” denotes the standard tensor product and I is the second order

identity tensor.

Remark 1. Note that we can deduce R∗
II = −∑

J∈NI
R∗

IJ from (3.4)1 and eventually

write (3.4)2 as

∑
J∈NI

R∗
IJ ⊗RIJ = I,

where RIJ = XJ −XI . If we think RIJ as the local “basis” incident on the node I,

this relation suggests that R∗
IJ constitute a set of generalized dual basis. The notation

of R∗
IJ is motivated by this observation.
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3.3 Discrete Galerkin formulation for linear elasticity

Consider the elasticity problems governed by the strong form:

∇σ + ρb = ρü, σ = σT in Ω,

σ = D : ε, ε =
1

2
(∇u +∇Tu) := ∇su,

(3.5)

where σ is the Cauchy stress, ε is the strain tensor, ρ is the density, ü is the accel-

eration, and D is the fourth-order elasticity tensor, assumed to be bounded, elliptic

and symmetric. The subscript s indicates the symmetric part of the gradient. The

boundary is a disjoint union of ∂Ωt and ∂Ωu, over which the following boundary

conditions are applied:

σn = t̄ on ∂Ωt

u = ū on ∂Ωu.

(3.6)

Here n is the unit outwards normal vector on the boundary. Conventional Galerkin

formulations are based on the continuum weak form

∫

Ω

ε(δu) : Dε(u)da +

∫

Ω

δu · ρüda−
∫

Ω

δu · ρbda−
∫

∂Ωt

δu · t̄ds = 0, (3.7)

where δu is any kinematically admissible virtual displacement. Here, (·) and (:)

denote the vector inner product and the tensor contraction, respectively.

In the discrete format, the integration over the domain breaks into a sum

over nodal cells. Over each cell, the strain is assumed constant and is computed
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from the discrete gradient at the corresponding nodes. A nodal integration scheme is

introduced, so that

∫

Ω

ε(δu) : Dε(u)da ≈
∑

I

AI(∇h
sδu)I : DεI(u),

∫

Ω

δu · ρüda ≈
∑

I

AIδu · (ρü)I =
∑

I

mIδu · üI ,

∫

Ω

δu · ρb da +

∫

∂Ωt

δu · t̄ ds ≈
∑

I

δuI · f ext
I ,

(3.8)

where εI is average strain for nodal cell, mI = AIρ and f ext
I :=

∫
ΩI

ρb da +
∫

∂Ωt∩∂ΩI
t̄.

This procedure may be regarded as a nodal integration scheme where AI play the

role of integration weights. The choice of weight is crucial for passing the patch test.

Over each nodal cell, the strain is approximated by the node-wise discrete

gradient. The discrete gradient of the displacement u, now a vector quantity and

using the discrete kinematics, is:

εh
I = (∇h

su)I =
1

2

∑

J∈nodes(ΩI)

(uJ ⊗R∗
IJ + R∗

IJ ⊗ uJ). (3.9)

We write the strain vector

[εh
I ] =

∑

J∈nodes(ΩI)

BIJuJ , where BIJ =




R∗1
IJ 0

0 R∗2
IJ

R∗2
IJ R∗1

IJ




. (3.10)
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Therefore, the cell-level stiffness matrix at the nodal cell I is

KI = AIB
T
IKDBIL K, L ∈ nodes(ΩI). (3.11)

The gradient of the virtual displacement is computed similarly:

(∇hδu)I =
∑

J∈nodes(ΩI)

δuJ ⊗R∗
IJ . (3.12)

Inserting (3.9) and (3.12) into the right side of (3.8)1 and re-arranging the terms, we

can write

∑
I

AI(∇h
sδu)I : σ(εh

I ) =
∑

I

δuI · f int
I ,

A straightforward manipulation shows that

f int
I =

∑

J∈nodes(ΩI)

AIσ(εh
I )R

∗
JI , (3.13)

where R∗
JI is the node-I interplant associated with node J . Therefore, the discrete

system of equations can be expressed as

f int
I + mIüI = f ext

I ∀I. (3.14)

Eventually, the global equation is

Kd + Md̈ = Fext,
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where K is the global stiffness matrix assembled from cellular stiffness matrices, and

M is the global diagonal mass matrix.

3.4 Discrete Galerkin formulation for finite strain

3.4.1 Fundamentals of continuum mechanics

In this section, we introduce the basic concepts of continuum mechanics and

nonlinear elasticity.

We use x for the current position of a material point, and X for its reference

position. Then the relationship between current position and reference position is

x = X + u, (3.15)

where u is the displacement. A fundamental measure of deformation is given by

F =
∂x

∂X
or F = 1 +

∂u

∂X
(3.16)

and subject to the constraint J = detF > 0 to ensure that material volume elements

remain positive. The determinant of the deformation gradient maps a volume element

in the reference configuration into the reference configuration

dv = detFdV

The right Cauchy-Green deformation tensor, C, is introduced as C = FTF.

Alternatively the Green strain tensor, E, is introduced as E = 1
2
(C − I), where I is
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the second order identity tensor.

In current configuration, a common deformation measure is the left Cauchy-

Green deformation tensor, b, expressed as b = FFT . The Green-Almansi strain

tensor, e, may be expressed in terms of b as e = 1
2
(I− b−1).

In finite deformation problems, care must be taken to describe the configu-

ration to which stress is measured. The Cauchy stress, σ, and the Kirchhoff stress,

τ , are measures defined with respect to the current configuration. They are related

through the determinant of the deformation gradient as τ = Jσ. The second Piola-

Kirchhoff stress, S, is a stress measure with respect to the reference configuration and

has components

S = JF−1σF−1.

Therefore, the second Piola-Kirchhoff stress is related to the Kirchhoff stress through

τ = FSFT . Finally, the first Piola-Kirchhoff stress, P, is related to S through

P = FS.

In the current configuration, traction is given by t = σn. And in the reference

configuration, traction is deduced from the first Piola-Kirchhoff stress through t0 =

PN, where N is an unit outward pointing normal to the reference surface. Using the

definition for traction and stresses, we obtain

FTnds = JNdS and ds =
√

N ·CNdS

to relate changes in the surface area and transformation of the norms.



26

3.4.2 Discrete deformation gradient in finite strain

In the discrete setting, the map Φ : x = Φ(X) is defined only at the nodes.

The discrete deformation gradient at the node I is given by

Fh
I := (Gradh Φ)I =

∑

J∈nodes(ΩI)

xJ ⊗R∗
IJ , (3.17)

where the interpolant R∗
IJ is defined relative to the reference geometry. Due to

the identity (3.4), the discrete gradient in Equation (3.17) exactly preserves any

homogeneous gradient, including as a special case the rigid body rotation. In fact, if

xJ − xI = FcRIJ , ∀ J ∈ NI and R∗
II = −∑

J∈NI
R∗

IJ , we have

Fh
I =

∑
J∈NI

(FcRIJ)⊗R∗
IJ = Fc

[ ∑

J∈nodes(ΩI)

XJ ⊗R∗
IJ

]
= Fc. (3.18)

A variation of the nodal positions induces a corresponding variation of the deformation

gradient

δFh
I := (Gradh δΦ)I =

∑
J∈NI

δΦJ ⊗R∗
IJ . (3.19)

The discrete spatial gradient of the displacement variation is introduced as

(∇hδΦ)I = (δFh
I )(F

h
I )
−1. (3.20)
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We can proceed to define discrete finite strains and their variations using the basic

formulae (3.17), (3.19), and (3.20). For example,

Ch
I = (Fh

I )
T (Fh

I )

δCh
I = (Fh

I )
T
[
(∇hδΦ)I + (∇hδΦ)T

I

]
(Fh

I ) = 2(Fh
I )

T (∇h
sδΦ)I(F

h
I ).

(3.21)

3.4.3 Discrete weak form in finite strain

In the Lagrangian setting, the equilibrium is governed by the boundary value

problem

Div P + ρ0b = ρ0ü, PF = FTPT in Ω0,

PN = p̄ on ∂Ω0t,

Φ = Φ̄ on ∂Ω0u,

(3.22)

where P is the first Piola-Kirchhoff stress, N refers to the unit outwards normal

vector on the boundary ∂Ω0, and the subscript 0 denotes quantities in the reference

configuration. The continuum weak form of the boundary value problem is

∫

Ω0

Grad δΦ : P(F)dA+

∫

Ω0

δΦ ·ρ0üdA−
∫

Ω0

δΦ ·ρ0bdA−
∫

∂Ω0t

δΦ ·p̄dS = 0. (3.23)

Similar to the small strain case, the external nodal force f ext
I is the resultant of the

forces applied on the cell I,

f ext
I =

∫

VI

ρ0bdA +

∫

∂VI∩∂Ω0t

p̄dS. (3.24)
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The discrete weak form can be stated as: find the current nodal positions xI , such

that

∑
I

A0I(Gradh δΦ)I : P(Fh
I )−

∑
I

δΦI · f ext
I = 0, (3.25)

for any kinematically admissible variation of the nodal position, subject to the discrete

kinematics relation (3.17) and the constitutive law P = P(Fh). Introduce the internal

force vector f int
I such that

∑
I

A0I(Gradh δΦ)I : P(Fh
I ) =

∑
I

δΦI · f int
I . (3.26)

The discrete weak form gives a set of nonlinear equations

f int
I + mIüI − f ext

I = 0 ∀I, (3.27)

or, in the assembled global system,

Fint + Md̈− Fext = 0. (3.28)

3.5 Solution strategy: Newton’s method

Newton’s method is employed to solve the nonlinear equations. If we record

the residual as R = Fext−Fint−Md̈. To implement a Newton method, it is necessary

to linearize the residual equation

R(k+1) = R(k) +
∂R

∂α
|(k)dα(k) = 0,
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where α is one the variables at time tn+1. We define tangent matrix as

S(k) = −∂R

∂α

and solve

S(k)dα(k) = R(k).

The solution is updated using

α(k+1) = α(k) + dα(k).

The tangent matrix for of the nonlinear equations may be expressed in terms

of the incremental displacements, velocity or acceleration. For example, consider the

case where the solution is parameterized in terms of increments of the displacement,

Sdd = −∂R

∂d
dd− ∂R

∂v

∂v

∂d
dd− ∂R

∂a

∂a

∂d
dd, (3.29)

where v = u̇ and a = ü. We do not show dependence on the iteration (k) for

simplicity of notation. From above equation, we observe that

K = −∂R

∂d
, C = −∂R

∂v
, M = −∂R

∂a
(3.30)

define the tangent stiffness, damping and mass, respectively. For materials employed

in our work, the damping matrix C is set be zero.
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For transient problem, the Newmark’s method define following parameters

during solution

∂d̈

∂d
=

1

β∆t2
,

∂ḋ

∂d
=

γ

β∆t
. (3.31)

Thus, the tangent matrix can be expressed as

S = K +
γ

β∆t
C +

1

β∆t2
M. (3.32)

3.5.1 The stiffness matrix

Linearization of the stress divergence term is often the most involved step in

computations and should be considered in a reference configuration representation.

The evaluation of the stiffness matrix K proceeds as follow. Invoking the following

continuum mechanics result regarding the stress power

δF : P =
1

2
δC : S = ∇s(δΦ) : τ , (3.33)

where S = F−1P is the second Piola-Kirchhoff stress and τ = FSFT is the Kirchhoff

stress, the increment of stress power under incremental displacement ∆x can be

derived as

∆(δF : P) = ∇s(δΦ) : [C+ I £ τ ] : ∇s(∆x), (3.34)

where C is the spatial material tangent tensor, in components

Cabcd = 2FaAFbB
∂SAB

∂CCD

FcCFdD. (3.35)
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The operator · £ · defines the Kronecker product of two second-order tensors, in

components [I £ τ ]abcd = δacτbd. Carrying these results to the discrete setting, the

increment of the stress power over the cell I (modulo the area factor) can be written

as

∆((Gradh δΦ)I : P(Fh
I )) = (∇h

sδΦ)I : [C+ I £ τ ] : (∇h
s (∆x))I . (3.36)

Therefore, the cell-level stiffness associated with cell I is

KKL = A0IB
T
IK

[
C+ I £ τ

]
BIL, K, L ∈ {I} ∪NI , (3.37)

where BIJ is the strain-displacement matrix corresponding to the spatial basis r∗IJ ,

which is updated at every iteration step.

3.6 Necessary condition to satisfy patch test

The patch test [97] has been widely used to assess the performance of numer-

ical formulations despite the controversy as to whether satisfying the patch test is

necessary for convergence. In the continuum case, it is now understood that the use

of linearly complete shape functions does not necessarily guarantee a linear exactness

in the solution; in fact, additional requirements must be placed on the test function

and numerical integration scheme in order to pass the patch test [25, 59, 60]. In this

section, we will make a similar observation for the discrete methods.

We discuss this issue in the context of large strain formulation; the small

strain case proceeds in the same manner. The linear patch test requires that a linear

solution xI = FcXI +a exactly satisfies the discrete equilibrium equations (3.27) cor-



32

responding to a zero body force boundary static value problem with the essential and

the natural boundary conditions prescribed according to the assumed linear motion.

To satisfy this requirement, the discrete gradient must be linearly complete, so that

any homogeneous deformation gradient is exactly recovered. In addition, the discrete

equilibrium equations (3.27) must be identically satisfied for any homogeneous stress

Pc under the application of boundary traction corresponding to the given homoge-

neous stress. The second requirement places restrictions on the discrete variation of

deformation gradient δFh
I . Consider the general representation

δFh
I =

∑

J∈nodes(ΩI)

δΦJ ⊗R∗
IJ . (3.38)

Substituting this expression into Equation (3.26), setting P = Pc and re-arranging

the sums, we identify

f int
I =

∑

J∈nodes(ΩI)

A0JP
cR∗

JI . (3.39)

According to Equation (3.24), in the absence of the body force, the external nodal

force must either be zero for interior nodes, or equal the resultant of the boundary

traction. Hence,

f int
I :=

∑

J∈nodes(ΩI)

A0JP
cR∗

JI =





0 if I is an interior node

∑
K∈BI

SIKPcNIK if I is a boundary node,

(3.40)

here Pc is any homogeneous Piola-Kirchhoff stress, and NIK is the unit normal vector
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on the exterior edge indexed by K. Since Pc is arbitrary, this equality dictates

∑

J∈nodes(ΩI)

A0JR
∗
JI =





0 if I is an interior node

∑
K∈BI

SIKNIK if I is a boundary node.

(3.41)

This is the discrete counterpart of the integration constraint derived by Chen et

al. [25].

We proved that the condition (3.41) is necessary for any proposed discrete

gradient operator to satisfy patch test.
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CHAPTER 4
VORONOI CELL DISCRETE GRADIENT METHOD

This chapter introduces a Galerkin formation that builds on discrete gradi-

ent defined on Voronoi cells. The formulation is presented in the context of two-

dimensional elasticity; the theory, however, applies to any dimension. The Voronoi

diagram is employed to identify the nodal support of the gradient operator and to

partition the domain into a set of non-overlapping cells. Compared to schemes that

rely solely on Euclidean distance to define the computational cell for discrete opera-

tors [56, 63, 64, 83], the use of the Voronoi diagram takes into account both distance

and neighborliness, and yields a natural (and in some sense an optimal) choice of

computational cells. The tessellation process is also fully automatic and does not

require algorithmic parameters such as the size of influence region. The global weak

form is evaluated using nodal integration, and thus, Gauss integration is eliminated.

The gradient interpolant has the Kronecker delta property; hence, it is straightfor-

ward to introduce essential boundary conditions and to couple the method with the

finite element method.

The chapter is organized as follows. In Section 4.1, the discrete gradient

operator is introduced. Section 4.2 details the implementation of this method in

linear elasticity, followed by a description of the extension to geometrically nonlinear

problems. Section 4.3 discusses the issue of patch test and provides proof for the fact

that the current formulation satisfies the linear displacement patch test.
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4.1 Discrete gradient over Voronoi cell

4.1.1 Partition with Voronoi cell

In our application, the domain Ω is bounded. The boundary ∂Ω is modeled

by closed planar line segments. We redefine the computational cell as the intersection

VI∩Ω where VI is the original Voronoi cell, which could be unbounded. If VI∩Ω = VI ,

the cell is an interior cell, and the corresponding node is an interior node. Figure

4.1(b) shows an example of an interior cell. If VI ∩ Ω $ VI , the cell is identified as

a boundary cell. The boundary of the cell I is define by (ΩI ∩ Ω)\(ΩI ∩ Ω), which

consists of closed straight edges. In the definition, the number of neighboring nodes

is always the same as the number of edges for any interior cell, while the number

of neighboring nodes is always less than the number of edges for any boundary cell.

Every edge of an interior cell is an interior edge that is shared by two neighboring

cells. Cell edges that fall on ∂Ω are called exterior edges; the set of exterior edges of

the cell I is denoted by BI . Due to the closeness, an interior node has at least three

neighbors (in general, nd + 1 neighbors, where nd is the dimension of the space). The

nodes on boundary ∂Ω are called boundary nodes. In this work, it is required that the

nodal distribution on the boundary be sufficiently dense so that every two adjacent

boundary nodes are natural neighbors to each other. For reasons that will become

clear in Section 4.1.4, we impose an additional requirement on boundary cells, that an

admissible boundary cell must have at least three natural neighbors. An example of

admissible boundary cells is illustrated in Figure 4.2. In the following, we will denote

the computation cell ΩI ∩ Ω simply by ΩI .
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Figure 4.1: Vectors defined over Voronoi cells. (a) An example of Voronoi tessellation;
(b) Notations used in the chapter.

I

S

IKn

IK xm
IK I- x

Figure 4.2: Illustrations of a boundary cells.
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4.1.2 A tensorial identity for Voronoi diagram

The starting point for deriving the discrete gradient operator is the Gauss

theorem
∫

Ω

∇ϕda =

∫

∂Ω

ϕnds, (4.1)

where Ω is a domain in the Euclidean space, ∂Ω is its boundary, and n is the unit

outwards normal on the boundary. For Ω ⊂ R2, setting ϕ = 1, ϕ = x and ϕ = y

respectively, we have

∫

∂Ω

nds = 0,

∫

∂Ω

X⊗ nds = AI, (4.2)

where A is the area of Ω, X = (X,Y ), and I is the identity tensor. With reference

to the Voronoi cell depicted in Figure 4.1(b), let SIJ to be the length of the edge

common to cell I and cell J , and let RIJ = ‖XJ −XI‖. Applying the identities (4.2)1

to the Voronoi cell I, and given that the normal vector of the edge IJ is nIJ = XJ−XI

RIJ
,

we obtain

∑
J∈NI

SIJ

RIJ

(XJ −XI) = 0, (4.3)

This identity is the basis of the non-Sibsonian interpolant introduced by Belikov et

al. [7, 8]. Sukumar et al. [92] established a Galerkin meshfree method using the non-

Sibsonian interpolation. Specifying Equation (4.2)2 to the Voronoi cell and using the
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trapezoidal rule on the boundary integral yield

1

AI

∑
J∈NI

SIJ

RIJ

Xm
IJ ⊗ (XJ −XI) = I, (4.4)

where AI is the area of the Voronoi cell ΩI , and Xm
IJ is the middle point of the edge

IJ . Note that the trapezoidal rule is exact in this particular case. From the vector

identities in Equation (4.3) and (4.4) we can further conclude that

1

AI

∑
J∈NI

SIJ

RIJ

(Xm
IJ − a)⊗ (XJ −XI) = I (4.5)

for any vector a. In particular, setting a = XI , we obtain the desired tensorial identity

1

AI

∑
J∈NI

SIJ

RIJ

(Xm
IJ −XI)⊗ (XJ −XI) = I. (4.6)

Introducing vectors

R∗
IJ =

SIJ

AIRIJ

(Xm
IJ −XI), R∗

II = −
∑
J∈NI

R∗
IJ , (4.7)

it follows from the definition (4.7) and the identity (4.6) that

∑

J∈nodes(ΩI)

R∗
IJ =

∑
J∈NI

R∗
IJ + R∗

II = 0,

∑

J∈nodes(ΩI)

R∗
IJ ⊗XJ =

∑
J∈NI

R∗
IJ ⊗XJ + R∗

II ⊗XI = I

(4.8)
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Equation (4.8)2 can be written equivalently as

∑

J∈nodes(ΩI)

R∗
IJ =

∑
J∈NI

R∗
IJXJ + R∗

IIXI = eX ,

∑

J∈nodes(ΩI)

R∗
IJ =

∑
J∈NI

R∗
IJYJ + R∗

IIYI = eY ,

(4.9)

where (eX , eY ) are the basis vectors. The tensorial identity (4.6) or its equivalent in

(4.8) plays a pivoting role in the ensuing development discrete gradient.

4.1.3 Discrete gradient operator at an interior node

Considering a continuous scalar function u : R2 7→ R, we define the discrete

gradient at an interior node I as

(∇hu)I =
∑

J∈nodes(ΩI)

R∗
IJuJ =

∑
J∈NI

R∗
IJ(uJ − uI) =

∑
J∈NI

R∗
IJuJ + R∗

IIuI . (4.10)

This gradient is linearly complete in the sense that it can exactly reproduce the

homogeneous gradient of any linear function. The linear completeness follows directly

from the properties recorded in Equation (4.8), which is same as the conditions listed

in Equation (3.4).

From the linear completeness, we can also estimate the truncation error. Let

hI be the characteristic length of the cell AI , say hI = maxJ∈NI
(SIJ , RIJ). Let us

assume that the function u(X,Y ) admits the Taylor series expansion at XI , so that

uJ − uI = u,X(XJ −XI) + u,Y (YJ − YI) + O(h2
I). (4.11)
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We say a family of Voronoi cell is regular if there are two constants c1, c2 ∈ (0,∞),

such that ciSIJ ≤ RIJ ≤ c2SIJ for every cell AI in the family. Assuming the Voronoi

diagram is from a regular family, an examination of R∗
IJ in Equation (4.7) shows that

R∗
IJ = O(h−1

I ). Substituting the Taylor expansion into Equation (4.10), we find

(∇hu)I =
∑
J∈NI

R∗
IJ [u,X(XJ −XI) + u,Y (YJ − YI) + O(h2

I)] = u,XeX + u,Y eY + O(hI),

(4.12)

namely (∇hu)I − ∇u(XI) = O(hI). The first derivatives are exactly preserved due

to the linear exactness.

4.1.4 Discrete gradient at a boundary node

The discrete gradient described above is based on the Gauss theorem (4.1).

Essentially, the average of gradient over an Voronoi cell, evaluated from the boundary

integral 1
AI

∫
∂Ω

unds, is used to approximate the gradient of u at the corresponding

node. A boundary cell defined in this chapter always has exterior edges that are

not associated with neighboring nodes. In this case, the sum
∑

J∈NI
R∗

IJ(uJ − uI)

reflects an integral over a partial boundary, and thus the gradient formula needs to

be modified.

Let BI denote the set of exterior edges of a boundary cell AI . With reference

to the notations introduced in Figure 4.2, the vector identities in Equation (4.3) for
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a boundary cell become

∑
J∈NI

SIJ

RIJ

(Xm
IJ −XI) +

∑
K∈BI

SIKnIK = 0,

1

AI

∑
J∈NI

SIJ

RIJ

(Xm
IJ −XI)⊗ (XJ −XI) +

1

AI

∑
K∈BI

SIK(Xm
IK −XI)⊗ nIK = I,

(4.13)

where SIK is the length of the exterior edge indexed by K, and nIK is the unit

outwards normal of this edge. The gradient is defined indirectly by

(∇hu)I =
∑
J∈NI

R∗
IJ(uJ − uI) +

[
1

AI

∑
K∈BI

SIK(Xm
IK −XI)⊗ nIK

]
(∇hu)I . (4.14)

That is,

[
I− 1

AI

∑
K∈BI

SIK(Xm
IK −XI)⊗ nIK

]
(∇hu)I =

∑
J∈NI

R∗
IJ(uJ − uI). (4.15)

Due to the relation in Equation (4.13)2, the tensor inside the square bracket equals

∑
J∈NI

R∗
IJ⊗(XJ−XI). By our requirement of admissible boundary cell, a boundary

cell must have at least two distinct neighboring nodes, implying that the matrix

[
∑

J∈NI
R∗

IJ ⊗ (XJ −XI)] has a full rank. It follows that

(∇hu)I =
∑
J∈NI

[ ∑
K∈NI

R∗
IK⊗(XK−XI)

]−1

R∗
IJ(uJ−uI) ≡

∑
J∈NI

R̂∗
IJuJ +R̂∗

IIuI , (4.16)
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where

R̂∗
IJ =

[ ∑
K∈NI

R∗
IK ⊗ (XK −XI)

]−1

R∗
IJ , R̂∗

II = −
∑
J∈NI

R̂∗
IJ . (4.17)

Equation (4.16) is the modified gradient operator for a boundary cell. The modified

interpolant obviously satisfies

∑
J∈NI

R̂∗
IJ + R̂∗

II = 0. (4.18)

Furthermore,

∑
J∈NI

R̂∗
IJ ⊗XJ + R̂∗

II ⊗XI =
∑
J∈NI

R̂∗
IJ ⊗ (XJ −XI)

=

[ ∑
K∈NI

R∗
IK ⊗ (XK −XI)

]−1[ ∑
K∈NI

R∗
IK ⊗ (XK −XI)

]
= I.

(4.19)

The properties in Equation (4.18) and (4.19) guarantee the linear completeness of the

modified gradient. In addition, following the argument in Section 4.1.3, we can also

conclude that the truncation error for cells in a regular family remains order O(hI).

In closing this section, it is noted that the discrete gradient operator (4.10)

coincides with the formula derived by Eymard et al. [44]. The boundary cell formula

(4.16), however, is different. Eymard et al. [44] considered only Dirichlet boundary

condition.
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4.2 Discrete Galerkin formulation

The framework of the implementation of the discrete gradient Galerkin for-

mulation in linear elasticity and finite strain are demonstrated in Section 3.3 and 3.4.

For interior cell, the discrete formulations are exactly same in previous chapter. Here,

we show the different process to handle boundary points because boundary cells are

not entire Voronoi cells.

4.2.1 Linear elasticity formulation

Invoking Equation (4.16), the discrete strain over a boundary node is given by

(∇hu)I =
∑
J∈NI

uJ ⊗ R̂∗
IJ + uI ⊗ R̂∗

IIuI . (4.20)

Consequently,

[εh
I ] =

∑
J∈NI

B̂IJuJ + B̂IIuI , (4.21)

where B̂IK is the strain-displacement matrix formulated using the vectors R̂∗
IK .

The variation of strain, however, is evaluated differently. On a natural bound-

ary, the normal gradient (∇u)n is prescribed. The variation of the corresponding

term in Equation (4.14) should be kept zero; hence,

(∇hδu)I =
∑
J∈NI

δuJ⊗R∗
IJ +δuI⊗R∗

II ⇒ [δεh
I ] =

∑
J∈NI

BIJδuJ +BIIδuI . (4.22)

The use of Equation (4.22)2 proves to be crucial in passing the linear displacement

patch test, as discussed in Section 4.3. This scheme, however, leads to an unsymmet-
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rical stiffness matrix

KKL = AIB
T
IKDB̂IL, K, L ∈ {I} ∪NI . (4.23)

Note that this modification applies only to cells having natural boundaries.

4.2.2 Finite strain formulation

For the finite strain formulation, the discrete deformation gradient at interior

node I is given by

Fh
I := (Gradh Φ)I =

∑
J∈NI

(XJ −XI)⊗R∗
IJ , (4.24)

where the interpolant R∗
IJ is defined relative to the reference geometry, namely,

R∗
IJ =

SIJ

A0JRIJ

(Xm
IJ −XI), R∗

II = −
∑
J∈NI

R∗
IJ . (4.25)

Denoting by RIJ = XJ−XI , the equality (4.3) can be written as
∑

J∈NI
RIJ⊗R∗

IJ =

I, suggesting that the vectors R∗
IJ play a duality role to RIJ . Due to the identity

(4.3), the discrete gradient in Equation (4.24) exactly preserves any homogeneous

gradient, including as a special case the rigid body rotation.

For a boundary cell with a natural boundary, the gradient and its variation
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are computed according to

Fh
I =

∑
J∈NI

(XJ −XI)⊗ R̂∗
IJ , δFh

I =
∑
J∈NI

(δΦJ − δΦI)⊗R∗
IJ , (4.26)

where R̂∗
IJ =

[∑
K∈NI

R∗
IK ⊗ (XK −XI)

]−1
R∗

IJ . Consequently,

(∇h∆X)I =
∑
J∈NI

(∆XJ −∆XI)⊗ r̂∗IJ , r̂∗IJ = (Fh
I )
−T R̂IJ ,

(∇hδΦ)I =
∑
J∈NI

(δΦJ − δΦI)⊗ r∗IJ , r∗IJ = (Fh
I )
−TRIJ .

(4.27)

The tangent stiffness is modified accordingly, as

KKL = A0IB
T
IK

[
C+ I £ τ

]
B̂IL, K, L ∈ {I} ∪NI , (4.28)

where B̂IJ is the strain-displacement matrix formulated from r̂∗IJ .

4.3 Patch test

In section 3.6, we discussed the necessary conditions to satisfy patch test. The

discrete gradient must be linearly complete and the condition (3.41). In this section,

we will show that the present formulation identically satisfies the condition (3.41) for

linear displacement patch test.

Recalling Equation (4.25), we find

A0IR
∗
II +

∑
J∈NI

A0JR
∗
JI = −

∑
J∈NI

SIJ

RIJ

(XJ −XI). (4.29)
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The right-hand-side is the discrete form of the integral − ∫
NdS over the interior

edges of a cell. For an interior cell, the sum vanishes, according to Equation (4.3)1.

For a boundary cell, the sum equals
∑

K∈BI
SIKNIK , according to Equation (4.13)1.

Therefore, the condition (3.41) is satisfied by construction. Note that while the vector

interpolant R∗
IJ defined in Equation (4.7) remains linearly complete if the vector XI

is replaced by any vector a, as implied by the identity in Equation (4.5), the insertion

of XI is crucial for satisfying the condition (3.41). Also, the following consistent

variation δFI = δΦI⊗R̂∗
II +δΦJ⊗R̂∗

IJ , which renders the stiffness matrix symmetric

for a boundary cell, does not satisfy Equation (3.41) in general, and thus will fail the

patch test.

4.4 Comparison with nodal integration natural element method

To put the current method further into perspective, we provide a short com-

parison between the present method and the recently published nodal integration

natural element method (nodal-NEM) [51, 103]. The nodal-NEM starts from a con-

tinuous approximation of the displacement field

u(x) =
∑
J∈Nx

φJ(x)uJ , (4.30)

where φI denotes the natural neighbor shape functions, which could be either the

Sibsonian interpolants [87, 93] or the non-Sibsonian interpolants [7, 8, 92], and Nx

stands for the set of nodes for which the associated shape function supports cover

the point x. The continuous strain is then averaged over a Voronoi cell (say cell I) to
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give a approximate nodal strain at the corresponding node:

ε̃h(xI) =
∑
J∈GI

B̃J(xI)uJ , (4.31)

where the set GI includes all the nodes for which the associated shape function sup-

ports overlap with the cell I. The ensuing node-wise approximate strain is substituted

into the weak form to derive a discrete system, see [25,51,103] for further details. The

Sibsonian and non-Sibsonian interpolants have Kronecker delta property; hence, the

nodal parameters are the physical displacements. In addition, under mild restrictions

the interpolation (4.30) reduces to a linear distribution over convex or non-convex

boundaries [31, 92, 93]. Thus, a linear essential boundary condition can be exactly

imposed. It is evident that, despite a different starting point, the current method has

a number of properties in common with the nodal-NEM at the end.

Nevertheless, there are some subtle and yet important distinctions at the algo-

rithmic level. A key difference between the discrete strain (4.21) and the algorithmic

strain in Equation (4.31) is that the latter has, in general, a larger nodal support (the

set of nodes that contributes to the nodal strain). The nodal support GI includes not

only the natural neighbors of the node I but also possibly some second-layer neigh-

bors. An example of such a case is shown in Figure 4.3. Consider the approximate

strain at the center node I. The support of the Sibsonian (and non-Sibsonian) shape

functions is the union of all Delaunay circumcircles that pass through the correspond-

ing node [92, 93]; here, the shape functions φI and φ1 through φ8 all have non-zero
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distribution over the Voronoi cell I. The approximate strain (4.31) at the node I,

therefore, depends on nodal values u1 through u8 (the average gradient of φI is zero

due to symmetry). In contrast, the discrete strain (4.21) depends only on nodal val-

ues u1 through u4, resulting in a smaller bandwidth in the final system. In addition,

the computation of the discrete strain is more straightforward. There is no need to

compute the new tessellation due to the insertion of nodes at integration points.

1

2

3

4

56

7 8

I

Figure 4.3: A rectangular grid to illustrate the difference in nodal support between
the nodal-NEM and the present method. The Sibsonian (and non-Sibsonian) shape
function at the corner node 8 has a non-zero distribution over the shaded region.
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CHAPTER 5
BARYCENTRIC DISCRETE GRADIENT METHOD

In this chapter, we introduce a new discrete formulation for domains originally

discretized by a polygon mesh. The method retains the essential features of Chapter

4, but differs in the ways of domain partition and gradient computation. We assume

that a mesh already exists; however, the mesh can contain an arbitrary combination

of triangle, quadrilateral, and general convex polygons. Instead of using the natural

neighbors as Chapter 4, we make use of the existing connectivity in the polygon

mesh. We provide a unified geometric approach for constructing a family of linearly

exact discrete gradient operators that applies to an arbitrary combination of polygon

elements. The final Galerkin formulation also exactly passes the linear displacement

patch test; however, unlike Chapter 4, the stiffness matrix is symmetric.

The chapter begins with the introduction of a polygon subdivision and the no-

tion of subdivision cell. The discrete gradient operator and its property are discussed

in Section 5.4, followed by the explicit formulations of the gradient interpolants in

triangle, quadrilateral, and pentagon. The discrete Galerkin formulation in 2D linear

elasticity is contained in Section 5.3. The aspect of patch test is discussed in Section

5.5.

5.1 Polygon subdivision

The proposed method begins with a partition of a polygon mesh into node-

based cells. This is achieved by a subdivision process that generalizes the barycentric

subdivision for polygons [29]. For an n-sided polygon, one first selects a pivoting
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point XP inside, and then partitions the polygon into n quadrilaterals by connecting

a vertex, the middle points of the two edges incident on the vertex, and XP . The

process is illustrated in Figure 5.1. If the pivot point XP is the barycenter (i.e., the

geometric centroid), this process reduces to the standard barycentric subdivision.

xp

I

J

K

Ie

(a)

xp

I

J

K

Ie

L

(b)

xp

I

J

K

Ie

L

M

(c)

Figure 5.1: Examples of polygon subdivision. (a) triangle; (b) quadrilateral; (c)
pentagon.

A domain Ω that originally contains N nodes is partitioned into N cells. Each

cell is the union of all subdivision quadrilaterals that contain a common node, as

illustrated in Figure 5.2(a). We denote by ΩI the cell associated with the node I.

Obviously, ΩI ∩ ΩJ = ∅ if I 6= J , and ∪N
I=1ΩI = Ω. If we denote the original polygon

element with Ωe and the set of the original polygon elements containing node I with

elem(I), we can define subcell ΩeI by ΩeI = Ωe ∩ΩI for e ∈ elem(I). For subsequent

use, we use subscript eI to denote subcells of node I for simplicity and introduce the
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following notations:

Ae : The area of polygon element Ωe ;

AeI : The area of subcell ΩeI ;

subcell(I) : The set of the subcells that contain the node I;

nodes(ΩeI) : Nodes relating to subcell ΩeI .

As shown in Figure 5.2(b), each nodal cell is the union of subcells ΩeI and we have

AI =
∑

e∈subcell(I)

AeI . (5.1)

And the subcell areas AeI are themselves affine covariant.

I

J7
1J

J2

J3

J4

J5 J6

I

(a)

I

eI

(b)

Figure 5.2: The cell ΩI and subcells ΩeI associated with the node I. (a)Nodal cell
ΩI and its nodal set node(ΩI) consisting of the nodes I and J1 through J7; (b)Nodal
cell ΩI is further divided into four subcells ΩeI .

There are many possible way for selecting the pivot XP . For reasons that will
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become evident later, we impose an invariance requirement on XP , such that any

affine transform applying to the vertices applies also to XP . That is,

xJ 7→ FXJ + a =⇒ xP 7→ FXP + a ∀ linear map F : R2 7→ R2 and a ∈ R2.

(5.2)

An easy example is the convex combination XP =
∑n

J=1 cJXJ , cJ > 0,
∑n

J=1 cJ = 1,

where n is the number of nodes in an element. For implementation consideration, we

further require that the formula of XP be cyclically symmetric in XJ . Examples of

admissible choices include:

1. The geometric centroid (i.e., the barycenter)

XP =

∫
Ωe

Xda

Ae

. (5.3)

For a convex n-polygon with vertices X1, X2 · · ·Xn, assuming the vertices are

oriented counter-clockwise, the coordinates of the barycenter follows the formula

XP =
1

6Ae

n∑
I=1

(XI + XI+1)(XIYI+1 −XI+1YI), with Xn+1 = X1. (5.4)

Here Ae is the element area, Ae = 1
2

∑n
I=1(XIYI+1 −XI+1YI). Note that both

(XIYI+1 −XI+1YI) and Ae are area forms; the quotient (XIYI+1 −XI+1YI)/Ae

is invariant under an affine transformation. Hence, the formula (5.4) is affinely

invariant. It is also cyclicly symmetric.
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2. The algebraic centroid

XP =
1

n

n∑
J=1

XJ . (5.5)

Clearly, this point is affinely invariant and cyclically symmetric. For convex

polygons, this point always lies inside the element. In a triangle, it coincides

with the barycenter.

Admissible choices are not limited to the barycenter and the algebraic centroid. We

will present an alternative scheme for quadrilaterals when discussing the explicit for-

mulations of gradient interpolant.

When XP satisfies the affine invariance, the area AI has two invariant proper-

ties that are critical to our development. Specifically, if we write AI as AI(XI ,XJ1 , · · · ,XJn)

to indicate the dependence of AI on the position of vertices in node(ΩI), then AI sat-

isfies

1 (Translational invariance) :

AI(XI + a,XJ1 + a, · · · ,XJn + a) = AI(XI ,XJ1 , · · · ,XJn) ∀ vector a ∈ R2,

2 (Affine invariance) :

AI(FXI ,FXJ1 , · · · ,FXJn) = det(F)AI(XI ,XJ1 , · · · ,XJn)

∀ linear map F : R2 7→ R2, detF 6= 0.

(5.6)

The first condition states that the cell area is invariant under a rigid translation

on the mesh. The second indicates that the area changes affinely under a uniform
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stretching or shearing to the mesh. These conditions hold because the cell is the

sum of subdivision quadrilaterals, which satisfy individually the above invariance

properties when XP observes (5.2).

5.2 Computation of gradient interpolants

In this chapter, the gradient interpolants are defined, uniformly for any com-

bination of polygons, as

R∗
IJ =

1

AI

∂AI

∂XJ

, J ∈ nodes(ΩI). (5.7)

Note that AI depends smoothly on the positions of the vertices in node(ΩI), and

hence, the derivative is well-defined. Since AI =
∑

e∈subcell(I) AeI , Equation (5.7) can

be written as

R∗
IJ =

1

AI

∑

e∈subcell(I)

∂AeI

∂XJ

. (5.8)

This is the canonical formula for the interpolant. The computation boils down to the

derivative of the subcell area AeI relative to the positions of vertices. The explicit

form for ∂AeI

∂XJ
depends on the type of polygon and the choice of XP . Some common

cases are discussed below.

5.2.1 Triangle

Consider the triangle element in Figure 5.1(a), where XP is the barycenter.

Denoted by AeI the area of the subcell ΩeI . Obviously, AeI equals to one-third of

the parent triangle area. When the nodes I, J, K are oriented counter-clockwise, we
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have

AeI =
1

6
((XJ −XI)(YK − YI)− (YJ − YI)(XK −XI)). (5.9)

It follows that

∂AeI

∂XI

=
1

6
(YJ − YK)ex − 1

6
(XJ −XK)ey,

∂AeI

∂XJ

=
1

6
(YK − YI)ex − 1

6
(XK −XI)ey,

∂AeI

∂XK

=
1

6
(YI − YJ)ex − 1

6
(XI −XJ)ey.

(5.10)

Note that the finite element gradient in a linear triangular element is (∇u)e =

1
Ae

( ∂Ae

∂XI
uI + ∂Ae

∂XJ
uJ + ∂Ae

∂XK
uK). In light of the relation AeI = 1

3
Ae, the finite element

gradient can also be written as

(∇u)e =
1

AeI

(
∂AeI

∂XI

uI +
∂AeI

∂XJ

uJ +
∂AeI

∂XK

uK

)
. (5.11)

With this result, the following remark is in order:

Remark 2. Over a triangular mesh, the discrete gradient is related to the FE gradient

through

(∇hu)I =

∑
e∈subcell(I) AeI(∇u)e∑

e∈subcell(I) AeI

. (5.12)
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This is because

(∇hu)I =
1

AI


 ∑

J∈nodes(ΩI)

∂AI

∂XJ

uJ


 =

1

AI


 ∑

J∈nodes(ΩI)

∑

e∈subcell(I)

∂AeI

∂XJ

uJ




=
1

AI


 ∑

e∈subcell(I)

∑

J∈nodes(Ωe)

∂AeI

∂XJ

uJ


 .

(5.13)

From (5.11), we see
∑

J∈nodes(Ωe)
∂AeI

∂XJ
uJ = AeI(∇u)e. The conclusion follows after

recognizing AI =
∑

J∈subcell(I) AeI . The relation (5.12) indicates that the discrete

gradient coincides with the nodal average strain introduced in [15,36].

5.2.2 Quadrilateral. Algebraic subdivision

The subcell area AeI in the quadrilateral element as shown in Figure 5.1(b)

follows the formula

AeI =
1

4
((XJ −XI)(YP − YI)− (YJ − YI)(XP −XI)

+ (XP −XI)(YK − YI)− (YP − YI)(XK −XI)).

(5.14)

If XP is the algebraic centroid, namely XP = 1
4
(XI + XJ + XK + XL), a straight

forward calculation shows

AeI =
1

16
(3XI(YJ − YL)−XJ(3YI − YK − 2YL)

−XK(YJ − YL) + XL(3YI − 2YJ − YK)).

(5.15)
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It follows that

∂AeI

∂XI

=
3

16
(YJ − YL)ex +

3

16
(XL −XJ)ey,

∂AeI

∂XJ

=
1

16
(−3YI + YK + 2YL)ex +

1

16
(3XI −XK − 2XL)ey,

∂AeI

∂XK

=
1

16
(YL − YJ)ex − 1

16
(XL −XJ)ey,

∂AeI

∂XL

=
1

16
(3YI − 2YJ + YK)ex − 1

16
(3XI − 2XJ −XL)ey.

(5.16)

5.2.3 Quadrilateral. Barycentric subdivision

Although the coordinates of the barycenter are rational functions, the subcell

area turns out to be a simple polynomial. In fact, substituting (5.4) into (5.14) we

find

AeI =
1

12
[2XI(YJ−YL)−XJ(2YI−YK−YL)−XK(YJ−YL)+XL(2YI−YJ−YK)]. (5.17)

Therefore,

∂AeI

∂XI

=
1

6
(YJ − YL)ex +

1

6
(XL −XJ)ey,

∂AeI

∂XJ

=
1

12
(−2YI + YK + YL)ex +

1

12
(2XI −XK −XL)ey,

∂AeI

∂XK

=
1

12
(YL − YJ)ex − 1

12
(XL −XJ)ey,

∂AeI

∂XL

=
1

12
(2YI − YJ − YK)ex − 1

12
(2XI −XJ −XK)ey.

(5.18)
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5.2.4 Pentagon. Algebraic subdivision

For the pentagon in Figure 5.1(c), when XP is the algebraic centroid, the area

AeI is

AeI =
1

20
(4XI(YJ − YM)−XJ(4YI − YK − YL − 2YM)

−XK(YJ − YM)−XL(YJ − YM) + XM(4YI − 2YJ − YK − YL)).

(5.19)

Therefore,

∂AeI

∂XI

=
1

5
(YJ − YM)ex +

1

5
(XM −XJ)ey,

∂AeI

∂XJ

=
1

20
(−4YI + YK + YL + 2YM)ex +

1

20
(4XI −XK − YL − 2XM)ey,

∂AeI

∂XK

=
1

20
(YM − YJ)ex − 1

20
(XM −XJ)ey,

∂AeI

∂XL

=
1

20
(YM − YJ)ex − 1

20
(XM −XJ)ey,

∂AeI

∂XM

=
1

20
(4YI − 2YJ − YK − YL)ex − 1

20
(4XI − 2XJ −XK −XL)ey.

(5.20)

Admissible algorithms are not limited to the barycentric subdivision and the

algebraic subdivision. For example, for a quadrilateral element, a possible choice of

Xp is the intersection of the two diagonals. This point can be shown to be affinely

invariant and cyclically symmetric. The resulting algorithm has an interesting con-

nection to a nodal average strain method, as we bring up in the remark below.

Remark 3. If XP is taken to be the intersection of the diagonals (Figure 5.3), the
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subcell area AeI is

AeI =
1

4
((YJ − YI)(XL −XI)− (YL − YI)(XJ −XI)). (5.21)

It so happens that the subarea equals to the nodal value of the Jacobian J of the

standard 4-node geometric mapping, namely,

AeI = Je(XI). (5.22)

Therefore, for a mesh that consists of entirely quadrilaterals,

AI =
∑

e∈subcell(I)

Je(XI). (5.23)

It is straight forward to verify that the derivatives ∂AeI

∂XQ
(Q = I, J,K, L) are related to

the physical derivatives of the shape functions NQ by

1

AeI

∂AeI

∂XQ

=
∂NQ

∂X

∣∣∣∣
X=XI

, Q = I, J,K, L. (5.24)

In this case,

∑

J∈nodes(ΩI)

∂AI

∂XJ

uJ =
∑

J∈nodes(ΩI)

∑

e∈subcell(I)

∂AeI

∂XJ

uJ

=
∑

e∈subcell(I)

∑

J∈nodes(Ωe)

AeI
∂NJ

∂X

∣∣∣∣
X=XI

uJ =
∑

e∈subcell(I)

AeI(∇u(XI))e.

(5.25)
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In light of this result and (5.22) and (5.23), the discrete gradient at node I can be

written as

(∇hu)I =

∑
e∈subcell(I) Je(XI)(∇u(XI))e∑

e∈subcell(I) Je(XI)
. (5.26)

This expression recovers the the nodal average strain of NICE-Q4 element in [61]

derived in a variational setting. It is worth noting that the derivative of AeI with

respect to the diagonal node XK in Figure 5.3 is identically zero. Thus, the discrete

gradient (∇hu)I at the node I does not depend on the nodes diagonal to it. This

leads to a smaller connectivity compared to the algebraic centroid and the barycentric

algorithms, but the linear system may be less stable.

xp

I

JK

Ie

L

Figure 5.3: Alternative partition: XP is the intersection of the diagonals.

5.2.5 Tetrahedron

Consider the tetrahedron element and select XP as the barycenter. Denoted

by VeI the volume of the subcell ΩeI . Obviously, VeI equals to one-four of the parent
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tetrahedron volume. When the vertex are nodes I, J, K, L, we have

VeI =
1

24
det(XJ −XI ,XK −XI ,XL −XI)

=
1

24
|(XJ −XI) · ((XK −XI)× (XL −XI))|.

(5.27)

Therefore,

∂VeI

∂XI

=
1

24
(YKZJ − YLZJ − YJZK + YLZK + YJZL − YKZL)ex

+
1

24
(−XKZJ + XLZJ + XJZK −XLZK −XJZL + XKZL)ey

+
1

24
(XKYJ −XLYJ −XJYK + XLYK + XJYL −XKYL)ez

∂VeI

∂XJ

=
1

24
(−YKZI + YLZI + YIZK − YLZK − YIZL + YKZL)ex

+
1

24
(XKZI −XLZI −XIZK + XLZK + XIZL −XKZL)ey

+
1

24
(−XKYI + XLYI + XIYK −XLYK −XIYL + XKYL)ex

∂VeI

∂XK

=
1

24
(YJZI − YLZI − YiZJ + YLZJ + YIZL − YJZL)ex

+
1

24
(−XJZI + XLZI + XIZJ −XLZJ −XIZL + XJZL)ey

+
1

24
(XJYI −XLYI −XIYJ + XLYJ + XIYL −XJYL)ez

∂VeI

∂XL

=
1

24
(−YJZI + YKZI + YIZJ − YKZJ − YIZK + YJZK)ex

+
1

24
(XJZI −XKZI −XIZJ + XKZJ + XIZK −XJZK)ey

+
1

24
(−XJYI + XKYI + XIYJ −XKYJ −XIYK + XJYK)ez.

(5.28)
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5.3 Discrete Galerkin formulation

Over each cell, the strain is approximated by the node-wise discrete gradient,

which, when applies to the vector field u, gives

(∇hu)I =
∑

J∈nodes(ΩI)

uJ ⊗R∗
IJ . (5.29)

The discrete Galerkin formulation in the context of linear elasticity and its

extension to finite elasticity had been described in Section 3.3 and 3.4. Therefore,

the implementation details are omitted here.

5.4 Discrete gradient and linear consistency

We seek to approximate the gradient of a physical variable u at node I by a

linear combination of the nodal values in the nodal set node(ΩI), viz.

(∇hu)I =
∑

J∈nodes(ΩI)

R∗
IJuJ . (5.30)

We show that the consistency conditions (3.4) are satisfied by construction.

Recall that the area AI obeys the invariance properties (5.6). Consider an one-

parameter family of vector a(ε) with a(0) = 0. Taking the derivative of both sides

of (5.6)1 with respect to ε, evaluating the derivatives at ε = 0, and noticing that

right-hand-side is independent of ε, we obtain


 ∑

J∈nodes(ΩI)

∂AI

∂XJ


 · ȧ(0) = 0. (5.31)
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where ȧ = da
dε

. Since the equation holds for any ȧ(0), and the vector inside the square

bracket is independent of ȧ(0), we conclude that

∑

J∈nodes(ΩI)

∂AI

∂XJ

= 0, (5.32)

which implies (3.4)1. Similarly, consider an one-parameter family of non-singular

linear map F(ε) with F(0) = I. Taking the derivative with respect to ε on both sides

of (5.6)1, noticing ˙detF = (detF)F−T : Ḟ, and evaluating the ensuing result at ε = 0,

we get

∑

J∈nodes(ΩI)

∂AI

∂XJ

· [Ḟ(0)XJ

]
=

(
detF(0)F−T (0) : Ḟ(0)

)
AI , (5.33)

where (:) stands for the usual tensor contraction. Using the identity u·Av = u⊗v : A

for any vectors (u, v) and second order tensor A, and noticing F(0) = I, we can write

(5.33) as 
 ∑

J∈nodes(ΩI)

∂AI

∂XJ

⊗XJ − AII


 : Ḟ(0) = 0. (5.34)

By the same argument, the bracketed term is a zero tensor, and that proves (3.4)2.

5.5 Patch test

In Section 3.6, we listed the necessary conditions to satisfy patch test. And

in follows, we show the condition (3.41) is satisfied by construction in the present

method. Invoking the relation (5.7), we find

∑

J∈nodes(ΩI)

AJR
∗
JI =

∂
(∑

J∈nodes(ΩI) AJ

)

∂XI

, (5.35)
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where R∗
JI is the node-I interplant associated with the cell J . The numerator

∑
J∈nodes(ΩJ ) AJ constitutes the sum of the area AI and its one-ring neighboring cells.

Since the area outside the one-ring elements connecting to the node I is indepen-

dent of XI , we have
∂(

∑
J∈nodes(ΩI ) AJ)

∂XI
=

∂(
∑

e∈elem(I) Ae)
∂XI

, and hence the equation (5.35)

becomes

∑

J∈nodes(ΩI)

AJR
∗
JI =

∂
(∑

e∈elem(I) Ae

)

∂XI

=
∑

e∈elem(I)

∂Ae

∂XI

. (5.36)

The derivative ∂Ae

∂XI
can be readily computed with the aid of the triangle area

formula (5.9). With reference to the notations in Figure 5.4(a), we can write

∂Ae

∂XI

= S⊥, (5.37)

where S⊥ is normal vector on the line M1M2 whose length equals to the that of M1M2,

or, S⊥ =
∫

M1M2
nds where n is the unit normal vector on M1M2 pointing to the node

I. Note that this formula applies to any polygon element. Invoking the divergence

theorem
∮

nds = 0 and applying it to the triangle M1IM2, we can further conclude

∂Ae

∂XI

=

∫

M1I

nds +

∫

IM2

nds. (5.38)

Therefore,

∑

e∈elem(I)

∂Ae

∂XI

=
∑

e∈elem(I)

(∫

M1I

nds +

∫

IM2

nds

)

e

. (5.39)

When I is an interior node (Figure 5.4(b)), the line integrals cancel in pair and eventu-

ally
∑

e∈elem(I)
∂Ae

∂XI
= 0. When I falls on the boundary (Figure 5.4(a)),

∑
e∈elem(I)

∂Ae

∂XI
=
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∫
∂Ωt∩∂ΩI

nds. Hence, the integration condition (3.41) is identically satisfied.

IM2

M1

S

n

I

xp

(a)

I M2

M1

S n

I

(b)

Figure 5.4: Illustration of the vector ∂Ae

∂XI
. (a) In an element or a boundary cell; (b)

In an interior cell.
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CHAPTER 6
NUMERICAL TESTS

In this chapter, we present the numerical results of some benchmark tests

to validate the accuracy, convergence and capability of dealing with incompressibil-

ity constraint without severe locking. In examples, we test the behavior of discrete

gradient method based on different domain partitions, which are Voronoi cell (VC.),

Delaunay triangle (Tri.), quadrilateral (Quad.) and pentagon. Moreover, three formu-

lations for quadrilaterals have implemented: the geometric subdivision, the algebraic

subdivisions and the diagonal subdivision (NICE-Q4). Since the result of first two for-

mulations remain close to each other in the considered examples as the quadrilateral

are more or less parallelograms, only the algebraic subdivision as the representative

for the two. It should be noted that in distorted meshes these two formulations are

expected to yield different results.

6.1 Patch test

Consider the extension of a thin plate under uniform end load. The plate is

modeled as a linear isotropic elastic material with Young’s modulus E = 500 and

Poisson’s ratio ν = 0.3. The left edge is constrained against the x-displacement at all

nodes, and the y-displacement at the lower-left corner. A uniform traction of σx = 10

is applied at the right edge. Under the plane strain condition the displacements in

the beam are

u = 0.018200x, v = −0.007800y

and σx = 10.
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Here, we tested several meshes, including Voronoi cell, triangle mesh, a quadri-

lateral mesh, a combination of triangles and quadrilaterals, and a combination of

quadrilaterals and pentagon. The displacement error is monitored by the error func-

tion

Error =

(∑N
I=1(uI − uh

I ) · (uI − uh
I )∑N

I=1(uI · uI)

) 1
2

, (6.1)

where N is the total number of nodes in the mesh. Table 6.1 lists the displacement

errors and stress values in different meshes. The displacements and stresses are also

graphically presented in Figure 6.1. Clearly, in all meshes the patch tests are satisfied

to within numerical precision.

Tessellation Err Stress-x
Voronoi cell 2.103E-16 10.0

Triangle 4.255E-16 10.0
Quadrilateral 3.479E-16 10.0

Tri. and Quad. 2.642E-16 10.0
Quad and Pent. 2.263E-16 10.0

Table 6.1: Uniaxial tension test

6.2 Coupling with FEM

In the present formulation, the nodal coefficients uI are the physical values of

the unknown. This feature makes it straightforward to introduce essential boundary

conditions in the formulation or to couple the method with the finite element method.

Essential boundary conditions can be imposed in exactly the same manner as the

finite element method. Here, we demonstrate the procedure of coupling with the
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Figure 6.1: Patch test results. (a) Contours of σx; (b) Contours of axial displacement
ux

finite element model using the example shown in Figure 6.2.

In this example, the domain (i.e., the plate) is divided into two subdomains;

the left subdomain is represented by points while the right is further divided into

elements. The two subdomains share a common interface on which the nodes from

both sides coincide. Each subdomain is treated individually to yield their respective

equations. The global equations are assembled from the subdomain contributions in

exactly the same manner as the finite element assembly. Note that the nodal stiffness

of the interface nodes consists of contributions from both the point domain and the

element domain.

This coupling scheme is tested against a uniaxial tension problem. The plate

is subject to a uniform traction of σx = 10 at the right end, and properly fixed at the

left end to allow for a simple tension. The resulting axial displacement is shown in

Figure 6.3(a) and (b). The predicted axial stress is homogeneous and exactly equals
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the analytical value as shown in Figure 6.3(c) and (d). Evidently, the applied force

is transmitted correctly from the finite element domain to the point domain.

Point domain FEM domain

(a)

Point domain FEM domain

(b)

Figure 6.2: Schematics of the model of Coupling with finite element method. (a)
Voronoi cell partition and FEM; (b) Polygon partition and FEM.

6.3 Beam subject to transverse tip load

In order to assess the convergence of the formulation, we consider the bench-

mark problem of bending of a cantilever beam under a shear load at the tip illustrated

in Figure 6.4. The analytical solution of this problem is provided by Timoshenko and

Goodier [99]. The beam considered here has a length L = 10 and a width D = 2.

The material is assumed to be linear isotropic. The shear force is P = 0.2.

A convergence study is performed using regularly distributed nodes of 3× 11,

5× 21, 7× 31 and 9× 41 with triangle and quadrilateral partition. The plane strain

condition is assumed, and both a compressible material (E = 500, ν = 0.3) and a

nearly incompressible material (E = 500, ν = 0.4999) are considered. At each nodal

density, the method is compared with the linear triangle finite element, quadrilateral
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Figure 6.3: Results of Coupling with finite element method. (a) Contour of axial
displacement; (b) Contour of axial displacement; (c) Contour of axial stress; (d)
Contour of axial stress;

D

L
P

y

x

Figure 6.4: Schematics of cantilever beam bending.
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element and the the 5-parameter enhanced strain element developed by Simo and

Rifai [88]. The error is measured by the same function in Equation (6.1).

The convergence results are presented in Figure 6.5. For compressible material,

the present method displays a comparable accuracy and convergence rate as the

finite element. In the triangle mesh, the discrete method shows a slightly higher

accuracy than the linear elements, but the quad mesh shows the other way. The

enhanced element displayed a superior accuracy than all other methods but the rate

of convergence appears lower. For nearly incompressible case, the discrete method

retains the same level of accuracy and convergence rate as in the compressible case,

without evidence of locking. It is not surprising that the enhanced element gives

better accuracy in both cases because the element is designed to alleviate numerical

locking.
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Figure 6.5: Displacement error versus number of nodes. (a) Compressible material;
(b) Incompressible material.
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6.4 Shear locking in thin beam

It is known that the displacement-based bilinear quadrilateral element suffers

from shear locking in the thin-element limit. Remedies were developed mainly along

two lines, the enhanced strain method [88] and selective integration with hourglass

control [11]. Since the current method is essentially a strain average scheme, it is

expect to alleviate shear locking in thin beams. To assess its behavior, we consider a

series of progressively thin cantilevers with the slenderness ratio (the ratio of beam

length versus height) varying from 2.5 to 640. The beams are subject a transverse

load at the tip, and modeled by linear elasticity material E = 500, ν = 0.3. One layer

of elements is placed over the height.

The effect of locking is measured by the ratio

r :=

∣∣∣∣
vh

v

∣∣∣∣. (6.2)

where v and vh are the analytical and numerical tip displacements. As locking inten-

sifies, vh → 0 and hence r approaches zero. On the contrary, r approaches unity for

locking-free response. Figure 6.6, shows that the present method exhibits locking-free

behavior. The ratio is 1.001137 when slenderness is 10. For the largest slenderness

ratio 640, the method still yields a very accurate tip displacement of r = 0.991113.

6.5 Mesh distortion

It is well known that the accuracy of finite element solution depends on mesh

quality. If an element has a large aspect ratio, the element matrices may be rank
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Figure 6.6: The ratio of numerical versus analytical tip deflections.

deficient and the resulting linear system may be poorly conditioned. The discrete

method, on the contrary, is expected to be resilient to mesh distortion. This is because

the discrete gradient consists of weighted average of the finite element gradients where

the weights are directly related to element subareas (see Remarks 2 and 3). Typically,

in a reasonably uniform mesh, a skew element would have a relatively small area, and

thus, its contribution to the nodal gradient may be less significant.

This speculation is verified numerically using the example below. Consider

the (short) cantilever of dimension of 3 × 2, subjected to a 0.2 shear load at right

end and fixed at the left end (Figure 6.7). The material is linear elastic, E = 500

and µ = 0.3. The beam is discretized using two sets of meshes, one regular and the

other distorted. Within each set, a triangle and a quad mesh are employed, as shown

in Figures 6.7 and 6.8. Note that the triangle elements in Figure 6.8(b) are severely

distorted. The problem is solved by FEM and the current method. The vertical

displacements at nodes A, B and C are compared. These nodes are placed on the
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middle and remain intact during mesh distortion. The analytical solution is included

as a reference. The displacements are not expected to agree well with the analytical

solution because of the coarse mesh used. Nevertheless, their variation across meshes

provides a reasonable indicator for the mesh distortion effect. The problem is also

analyzed using the discrete method with Delaunay triangles. It is known that the

Delaunay mesh is the optimal triangle tessellation for an arbitrary set of nodes in the

sense that the Delaunay triangles maximize the minimum angle among all possible

triangulation.

The displacements at the said nodes are listed in Table 6.2 and Table 6.3. It is

clear that, in overall, mesh distortion appears to have a small to moderate effect on the

current method. The largest relative difference between the regular and the distorted

triangle meshes is 11%, occurred at node B. In the quadrilateral meshes, the difference

is below 7%. On the other hand, for FEM, the maximum displacement differences is

16% for quadrilateral element and 20% for triangle element, both occurred at node

C. Evidently, compared to FEM the discrete formulation shows a lesser degree of

sensitivity to mesh distortion. The deviations between the distorted triangle and the

Delaunay mesh, which is considered to be a “good” triangle mesh, are also relatively

small (within 10%).

6.6 Stress concentration around circular hole

We analyze a problem that involves moderately large stress concentration.

The system in Figure 6.9 corresponds to the central region of an infinite plate with a

circular hole subject to a uniform tensile load in the y-direction. The stress solution
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Figure 6.7: Regular meshes. (a) Delaunay triangle; (b) Triangle; (c) Quadrilateral.

A B C

(a)

A B C

(b)

A B C

(c)

Figure 6.8: Distorted meshes. (a) Delaunay triangle; (b) Triangle; (c) Quadrilateral.

Point Analytic Quad. FEM Tri. FEM Quad. DGM Tri. DGM Delaunay
A 1.508E-03 1.315E-03 1.005E-03 1.518E-03 1.841E-03 1.841E-03
B 4.108E-03 3.465E-03 2.599E-03 4.998E-03 5.699E-03 5.699E-03
C 7.254E-03 6.095E-03 4.463E-03 8.492E-03 1.013E-02 1.013E-02

Table 6.2: Nodal displacements from regular meshes

Point Analytic Quad. FEM Tri. FEM Quadrilateral Triangle Delaunay
A 1.508E-03 1.341E-03 1.059E-03 1.578E-03 1.906E-03 1.738E-03
B 4.108E-03 3.059E-03 2.293E-03 4.636E-03 5.022E-03 5.817E-03
C 7.254E-03 5.095E-03 3.576E-03 8.118E-03 9.172E-03 9.841E-03

Table 6.3: Nodal displacements from distorted meshes
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for the infinite system is given, in cylindrical coordinates, as [99]

σr =
p

2
[(1− a2

r2
)− (1 +

3a4

r4
− 4a2

r2
) cos 2θ]

σθ =
p

2
[(1 +

a2

r2
) + (1 +

3a4

r4
) cos 2θ]

τrθ =
p

2
(1− 3a4

r4
+

2a2

r2
) sin 2θ,

(6.3)

where a is the radius of the hole. At (r, θ) = (a, 0), the tangential stress σθ (namely

σy) has a concentration factor of 3.

w

h r

P

P

y

x

(a)

P

(b)

Figure 6.9: Plate with a hole in the center subject to uniform tensile stress. (a)
Central portion; (b) Simplified quarter model.

In the simulation, the central square region of 20× 20 with the hole of radius

a = 1 is modeled. Due to symmetry, only a quarter of the plate is considered,

and symmetric boundary conditions are placed along the left and the bottom edges.

Other parameters are set such that p = 0.1, E = 500, ν = 0.3. The quarter domain
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is discretized with Voronoi cell, triangular and quadrilateral mesh as shown in Figure

6.10, and is analyzed by the barycentric discrete method. The result contour of σy is

plotted in Figure 6.11(a), where we see the stress concentration. The distributions of

σx and σy along the bottom edge are depicted in Figure 6.11(b) and are compared to

the analytical solution. It can be seen that the stress results compare well with the

analytical solutions.

(a) (b) (c)

Figure 6.10: Partition of domain. (a) Voronoi diagram; (b) Triangular partition; (c)
Quadrilateral partition.

6.7 Cook’s membrane

The Cook’s membrane is a tapered and swept panel of unit thickness. The left

edge is clamped and the right edge is subjected to a distributed shear as illustrated in

Figure 6.12. Frequently, this problem is used to assess the convergence properties of a

numerical method near the incompressible limit under a mixture of shear and bending

strains [1,32]. In this test, finite strain deformation is assumed and the membrane is
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Figure 6.11: Stress calculated by DGM. (a)Contours of σy; (b)Distributions of σx and
σy along the bottom edge.

modeled by a neo-Hookean material with the energy function

W =
µ

2
(I1 − 2 log J − 3) +

λ

2
(log J)2

where µ = 80.1938 and bulk modulus λ = 40.0942× 104 is adopted. Also, a vertical

load F = 100 is employed. The near incompressibility condition is introduced using

a λ/µ ratio on the order of 104. The plane strain condition is assumed.

A mesh of four elements per side is depicted in Figure 6.12(a). The mesh

is then progressively refined in order to assess the convergence. For comparison,

the vertical displacement at the upper right corner of the panel (point A in Figure

6.12(a)) is reported. The results are shown in Figure 6.12(b), where the displacements

are plotted against the number of elements per side. Solutions obtained from the

standard three-node triangular element and finite strain mixed formulation [89] are
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also included.

The discrete gradient method in overall produces accurate results. With

quadrilateral meshes the solutions are reasonably good even at the coarse mesh end

(< 8 × 8). As the mesh refines the solutions from both triangle and quadrilateral

meshes approach that of the mixed formulation, although from above (i.e., the present

method over predicts the displacements). In contrary, the linear triangular element

displays a locking behavior across all meshes.
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Figure 6.12: Cook’s membrane problem. (a) Schematics of the system; (b) Conver-
gence under mesh refinement.

6.8 Radial expansion of a cylindrical tube

This example assesses the performance of the discrete method in dealing with

finite strain incompressible materials. The tube considered has an undeformed inner

radius Ri = 1 and an outer radius of R0 = 2. The tube is made of an incompressible
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hyperelastic material described by the energy function

W =
µ1

2
(I1 − 3) +

µ2

4
(I1 − 3)2,

where I1 = tr (FTF). In the numerical computation, a penalty energy κ
2
(log(J))2

with a large value κ is augmented to the energy function to introduce nearly incom-

pressibility. The following numerical values are used:

µ1 = 100, µ2 = 5, κ = 1000000.

The analytical solution of this problem can be obtained through a procedure described

by Green and Zerna [52]. Briefly, the incompressibility condition alone determines

the radial motion to within an integration constant, which is in turn solved from an

integral form of the radial equilibrium equation. Once the motion is determined, the

stress in the wall can be found.

The system is modeled using the proposed discrete method. Due to symmetry,

only a quarter of the domain is considered. The quarter domain is discretized into

9× 25 non-uniform nodes, as shown in Figure 6.15(a). Three types for partitions are

employed: Voronoi cell, triangular and quadrilateral mesh. A uniform finite element

mesh of the same nodal density is introduced for comparison. The mixed element

developed by Simo et al [88] is employed in the finite element simulation. Figure

6.8 presents the radial displacement of the inner wall as a function of the internal

pressure. The discrete result clearly agrees well with both the analytical and the finite
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element solutions. The displacements of the bottom nodes at the maximum pressure

of P = 150 are plotted in Figure 6.14. Again, the results are in good agreement

with the analytical and the finite element solutions. The contour of nodal radial

displacements and hoop stress are plotted in Figure 6.15. However, nodal radial

displacements distribution is not perfectly axis-symmetric. This is understandable

because the nodes are not axisymmetrically placed.
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Figure 6.13: The inner wall radial displacement versus applied pressure.

6.9 Twist of three-dimensional beam

Although we developed and demonstrated discrete gradient method and test-

ing examples in two-dimension space, all of the formulas can be easily extended three-

dimension application. In this section, we use an example of twist of beam to show

the capability of our method in dealing with three dimensional large deformation.
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Figure 6.14: Radial displacement along the wall thickness.

(a) (b)

Figure 6.15: Radial expansion of a cylinder under internal pressure. (a) Radial dis-
placement; (b) Hoop stress.
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The beam is modeled as a hyperelastic material described by the energy function

W =
100

2
(I1 − 3) +

5

4
(I1 − 3)2.

One of its ends is fixed. Moreover, displacements control is added on the other end

to simulate the twist. The twisted angle of this beam is gradually increased to 720◦.

Figure 6.16 shows the whole process. Form it, we can see that the beam model lost

stability only after the twisted angle is larger than 630◦.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 6.16: Contour of Von Mises stress for twisted beam. (a) Twisted angle is
90◦; (b) Twisted angle is 180◦; (d) Twisted angle is 270◦; (e) Twisted angle is 360◦;
(f) Twisted angle is 450◦; (g) Twisted angle is 540◦; (h) Twisted angle is 630◦; (i)
Twisted angle is 720◦.
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CHAPTER 7
STABILIZATION OF DISCRETE GRADIENT METHOD

7.1 Introduction

Similar to the nodal integration methods and other particle methods, the

discrete gradient method is prone to have spurious singular modes arising from either

improper representation of gradient or under-integration of the weak form. A simple

example is the saw-teeth mode. As shown in Figure 7.1(a), the domain is divided

into nine barycentric cells or nodal cells. And the shade region ΩI is the nodal cell

domain assigned to the centric node I. This nodal cell domain can be further divided

into four equal subcells by dotted lines. Under the saw-teeth deformation in Figure

7.1(b), the left and right half undergoes pure shear differing by a sign. Therefore, the

average strain in the center nodal cell will be zero although the shear strain in each

subcell is not. Only the boundary cells contribute to the strain energy and hereby,

in the limit of mesh refinement the total energy approaches zero, leading to spurious

zero energy mode. Unlike the hourglass mode that appears in reduced integration

quadrilateral elements, which is independent of element shape, here the local zero

energy mode could be geometry and connectivity dependent and thus, some spurious

modes can be prevented by perturbing nodal position. Nevertheless, they cannot be

exhaustively suppressed without any additional skill.

Some methods have been developed to improve the stability of nodal integra-

tion method. To overcome the instability resulted from under integration of weak

from in element-free Galerkin method, Beissel and Belytschko [6] added a square of
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Figure 7.1: Example of deformation with zero average strain. (a)Original configura-
tion. Shade region in the nodal cell domain assigned to centric node I, and dotted
lines divide the region into four equal subcells. (b)Deformed configuration.

the residual in the governing equation, which includes the second derivatives of the

displacements, to the potential energy functional as a stabilization. Later, Bonet and

Kulasegaram [14] introduced a least-square stabilization in variational potential with

a integration correction to avoid high order derivatives of shape function. These meth-

ods address the singularities arising from rank deficiency. Chen [25,26] and Yoo [103]

proposed a stabilized conforming nodal integration with a strain smoothing stabiliza-

tion. Bonet [15] employed a modified nodal deformation gradient, which relies on

modified shape functions, to remove unrealistic modes in linear tetrahedral element

of average strain. The aspects of stability, consistency and explicit time integration

in both element-based and meshfree-based nodal integration methods are discussed

in a recent publication [84]. However, we will not use the two methods because we

do not want to include other algorithms to calculate deformation gradient and make

our method more complex. Puso et al. [85] proposed a stabilized strain energy for

nodally integrated tetrahedral element [36] by adding a term of element strain. This
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method addressed the issue of cancellation of opposite strain, and hence the idea is

directly applicable to the current case. Following this work, we proposed a stabilized

discrete gradient method by penalize the difference between nodal average strain and

subcell strain. In our formulation, the stabilized scheme relies on discrete gradient

operators but not fall back on the element interpolation. This preserves simplicity

and discrete nature of our method. On the other hand, we will focus our work on the

discrete gradient method founded on polygon mesh but not Voronoi diagram for the

simplicity.

7.2 Subcell gradient

In this section, we introduce the discrete gradient in subcells, which are defined

in Chapter 5. Let us define

R∗
eIJ =

1

AeI

∂AeI

∂XJ

, J ∈ nodes(ΩeI). (7.1)

Obviously, the following subcell gradient

(∇hu)eI =
∑

J∈nodes(ΩeI)

R∗
eIJuJ , (7.2)

is also linear consistent. In fact, the nodal gradient interpolant is related to the

subcell ones by the following relation:

R∗
IJ =

1

AI

∑

e∈subcell(I)

AeIR
∗
eIJ . (7.3)
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It follows that the nodal gradient (3.2) is a weighted average of the subcell gradients,

viz,

(∇hu)I =
1

AI

∑

e∈subcell(I)

AeI(∇hu)eI . (7.4)

This relation plays a key rule in the ensuing development.

7.3 Stabilized discrete Galerkin formulation

Puso et al. [85] proposed a stabilized strain energy for nodally integrated tetra-

hedral element [36]. The instability also arises from the cancellation of nodal average

strains of opposite sign in saw-teeth type mode. Puso suggested penalizing the dif-

ference between the nodal average strain and the element strains by adding to the

energy as quadratic term:

∫

Ω

ε : Dεda →
N∑
I

VIεI : DεI +
N∑
I

∑

e∈elem(I)

α
Ve

4
(εI − εe) : D̃(εI − εe). (7.5)

Here, α is a stabilization parameter, D̃ is a positive-definite material tensor which

could be different from D, Ve is the volume of tetrahedral finite element and εe is

element strain. Note that the right-hand-side of (7.5) can be further simplified into

N∑
I

VI(εI : (D− αD̃)εI) +
N∑
I

∑

e∈elem(I)

α
Ve

4
εe : D̃εe. (7.6)

Puso’s idea can be readily applied to the discrete formulation. Here, we do

not have element strains but a natural substitution that is the subcell strain (7.2).
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We construct a modified energy form

∫

Ω

ε : Dεda →
N∑
I

AIεI : DεI +
N∑
I

∑

e∈subcell(I)

αAeI(εI − εeI) : D̃(εI − εeI). (7.7)

where εeI is the subcell strain and εeI = (∇su)eI . The added term penalizes the

difference between nodal average strain and subcell strain to avoid the instability

caused by cancellation. Invoking the relation (7.4), a straightforward computation

shows

N∑
I

AIεI : DεI +
N∑
I

∑

e∈subcell(I)

αAeI(εI − εeI) : D̃(εI − εeI)

=
N∑
I

AIεI : (D− αD̃)εI +
N∑
I

∑

e∈subcell(I)

αAeIεeI : D̃εeI .

(7.8)

Following the previous procedure to compute the subcell strain in discrete

kinematics, we have

εh
eI = (∇h

su)eI =
1

2

∑

J∈nodes(ΩeI)

(uJ ⊗R∗
eIJ + R∗

eIJ ⊗ uJ). (7.9)

In vector form,

[εh
eI ] =

∑

J∈nodes(ΩeI)

BeIJuJ , where BeIJ =




R∗1
eIJ 0

0 R∗2
eIJ

R∗2
eIJ R∗1

eIJ




. (7.10)
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The stabilized cell-level stiffness matrix is

Kstable
I = AIB

T
IK(D− αD̃)BIL +

∑

e∈subcell(I)

αAeIB
T
eILD̃BeIK K, L ∈ nodes(ΩI),

(7.11)

where D is the matrix form of elasticity tensor D. Moreover, the second term on the

right hand side in above equation is the contribution to stiffness matrix from subcells

and can be notated by αKe. The treatment of external force and inertia force remain

the same.

Remark 4. 1. If we let D̃ = D, from Equation (3.11) and (7.11), we can see that

Kstable
I = (1 − α)KI + αKe. It is a linear combination of stiffness from nodal

cell and subcells.

2. As D̃ = D and α = 1, the stiffness contributed by nodal cell is cancelled out,

so that Kstable
I = Ke. This formulation is very similar to the stiffness matrix

defined in the smoothed finite element method (SFEM) [65, 66]. And Liu et al

had shown that a quadrilateral finite element divided into four smoothing subcells

can suppress zero energy modes and gives stable results. The energy in (7.7)

reduces to
∑N

I

∑
e∈subcell(I) AeIεeI : DεeI . This energy is always nonzero for any

displacement field except for rigid body motions [27].

3. If D̃ = D, 0 < α ≤ 1 and material is incompressible, the subcell stiffness has

severe volume locking same as the behavior of low order finite element. This

will lead the Kstable
I to have the same problem even with very small α.
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4. A possible extension of the stabilization to finite strain elasticity is to replace

the cell energy AIW (FI) with the convex combination

AIW (FI) → (1− α)AIW (FI) + α
∑

e

AIeW (Fe) (7.12)

where FI and Fe are cell deformation gradient and subcell deformation gradient.

If α = 1, the method leads to a smoothed element stiffness matrix.

5. Puso et al suggest a appropriate choice for α and D̃. For isotropic elastic prop-

erties such that the effective lamé parameters λ and µ, the effective stabilization

parameter and material modulus can be chosen as

α = 0.05, µ̂ = µ and λ̂ = min(λ, 25µ̂).

7.4 A one-dimensional example

The following one-dimensional example may provide some insight into the

stabilization algorithm. Consider the axial vibration of an elastic bar of unit cross

section area. The governing equation is

c2∂2u

∂x2
= ü, (7.13)

where c =
√

E
ρ

is the wave speed, E and ρ are young’s modulus and material density,

respectively. The nodes are uniformed spaced over the length L as shown in Figure

7.2. The length that the nodal cell of xI occupies is LI = h = xI+1−xI−1

2
. The gradient
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interpolant formula, which applies to other dimensions, provides that AI in Equation

(5.7) is the corresponding Lebesgue measure (length in 1D, area in 2D, and volume

1n 3D). For the present case, at the node I, we have

R∗
IJ =

1

LI

∂LI

∂xJ

. (7.14)

It follows that

R∗
I I−1 = − 1

2h
, R∗

I I = 0, R∗
I I+1 =

1

2h
, (7.15)

and

u′I ≈ R∗
I I−1uI−1 + R∗

I I+1uI+1 =
uI+1 − uI−1

2h
. (7.16)

Without stabilizer, the strain energy of the cell I is

EI =
Eh

2
(u′I)

2 =
E

8h
(uI+1 − uI−1)

2, (7.17)

which notably doesn’t depend on uI . The equation of motion for the node I is

(
c

2h
)2(uI−2 − 2uI + uI+2) = üI . (7.18)

Assuming a solution which in the continuum limit has the form

u = sin(kx− ωt), (7.19)
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Figure 7.2: Nodes are uniformly spaced over one-dimensional bar.

where k = nπ
L

and n = 1, 2, 3, · · · . In the discrete setting, the nodal displacement is

uI+i = sin(kih+kxI−ωt), i = 0,±1,±2, · · · , and üI = −ω2 sin(kxI−ωt). Substitut-

ing them into (7.18), invoking the identified sin(kih + kxI −ωt) = sin(kih) cos(kxI −

ωt)+ cos(kih) sin(kxI −ωt), and cancelling a common factor sin(kxI −ωt) from both

sides, we obtain

ω2 = (
c

h
)2(2− 2 cos 2kh). (7.20)

Solving for ω gives the dispersion equation

ω

kc
=

1

kh

√
1

2
(1− cos 2kh). (7.21)

Let us now consider the basic cut-off wavelength kh = π. Substituting kh = π

into the above formula, we find ω = 0 . Consequently, the nodal displacements are

[· · · ,−1, 1,−1, 1, · · · ] after shifting the wave phase with π
2
. This solution translates to

the saw-teeth form as show in Figure 7.3 in the discrete setting. Evidently, the saw-

teeth wave is a spurious stationary wave. The source of instability is rank-deficient

instability in the stiffness matrix; one can readily see that the saw-teeth mode is a

zero-energy mode of the stiffness matrix. Although the source can be readily identified

from the stiffness matrix, the spectrum analysis above allows us to investigate the
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effect of stabilization analytically.

III I I- - + +1 2 1 2

Figure 7.3: A spurious stationary wave in saw-teeth form.

7.4.1 Stabilization

Following the 2D treatment, the augmented energy function should have the

form

EI =
Eh

2
(u′I)

2 +
αEh

2

[
(u′I − u′I,1)

2 + (u′I − u′I,−1)
2

]
(7.22)

where u′I,1 = uI+1−uI

h
and u′I,−1 = uI−uI−1

h
are subcell gradients which coincide with

the finite element gradients in the elements incident on node I. The energy reduces

to

EI =
(1− α)E

8h
(uI+1 − uI−1)

2 +
αEh

4

[(
uI+1 − uI

h

)2

+

(
uI − uI−1

h

)2]
. (7.23)

The equation of motion for the node I is

(1− α)(
c

2h
)2(uI−2 − 2uI + uI+2) + α

c

h
(uI−1 − 2uI + uI+1) = üI . (7.24)
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Following the same procedure, the dispersion equation is found to be

ω

kc
=

1

kh

√
1− α

2
(1− cos 2kh) + 2α(1− cos kh). (7.25)

Some conclusions can be readily drawn from the dispersion equation:

1. The natural frequency at the cut-off wavelength is no longer zero.

2. There is no other zero-energy mode. If one considers a bar fixed at least at one

end, all natural frequencies are positive.

Figure 7.4 presents the dispersion relation (7.25) for kh varying from 10−6π to π under

various values of α = 0, 0.005, 0.05, 0.5, 1. We can see that ω
kc

has the limitation of 1

as kh approaches to zero. In addition, ω
kc

will get bigger as α increase. It means that

the stabilized scheme results in a correct solution in the continuum limit. Moreover,

the stabilization parameter can increase the system stiffness.

0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

= 0
= 0.005
= 0.05
= 0.5
= 1

Figure 7.4: Dispersion relation under various α.
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7.5 Stability test

7.5.1 Natural frequencies of cantilever beam

As we mentioned in Section 7.1, only the boundary cells contribute to the

strain energy when interior nodal cells have zero average strain. Therefore, the total

system energy may approach zero in the limit of mesh refinement. To support this

discussion, we perform mode analysis on a very thin clamped cantilever beam with

fine mesh. The beam’s slenderness is 50. Both triangle and quadrilateral mesh with

6 × 200 regularly distributed nodes are considered to make the each nodal cell very

small. Elastic material, which E = 50000, ν = 0.3 and ρ = 1 is assumed. The natural

frequencies computed under various stabilization parameters are listed in Tables 7.1

and 7.2. Form Table 7.1, we can see that spurious modes appear after the seventh

mode in the unstable situation (α = 0) with triangular mesh. With quadrilateral

mesh and as α = 0, spurious mode appears at the third mode, as shown in Table

7.2. Overall, as spurious modes appear, their corresponding frequencies are below

the analytic values. However, the stabilized results are very close to analytic ones.

In another word, the stabilized scheme preserves system energy very well. The first

five modes obtained from the quadrilateral mesh are depicted in figure 7.5. It can be

seen from Figure 7.5(a) that the spurious modes have the saw-teeth pattern in the

middle span of the beam. The results of the triangular mesh follow the same pattern

and are not reported here. Figure 7.5(b) shows the modes captured after stabilization

(α = 0.05).
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(a) (b)

Figure 7.5: The first five mode shapes. (a) Unstabilized (α = 0); (b) Stabilized
(α = 0.05).

Frequency Analytic Tri. DGM
α = 0 α = 0.005 α = 0.05 α = 0.5 α = 1

1 0.072 0.072 0.072 0.072 0.078 0.084
2 0.453 0.448 0.449 0.453 0.489 0.526
3 1.268 1.251 1.252 1.263 1.365 1.468
4 2.484 2.439 2.442 2.464 2.661 2.861
5 4.106 4.008 4.012 4.047 4.371 4.698
6 6.134 5.942 5.948 6.000 6.481 6.963
7 8.568 7.818 8.234 8.307 8.972 9.635
8 11.407 8.226 10.853 10.945 11.826 12.694
9 14.652 10.842 13.785 13.909 15.023 16.112
10 18.302 13.771 17.012 17.166 18.541 19.883
11 22.358 15.616 20.512 20.670 22.358 23.966
12 26.819 16.994 24.266 24.490 26.455 28.343

Table 7.1: The first twelve frequencies with triangular mesh.
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Frequency Analytic Quad. DGM
α = 0 α = 0.005 α = 0.05 α = 0.5 α = 1

1 0.072 0.074 0.074 0.074 0.075 0.076
2 0.453 0.461 0.462 0.462 0.469 0.476
3 1.268 0.930 1.288 1.290 1.310 1.330
4 2.484 1.288 2.510 2.515 2.554 2.594
5 4.106 2.510 4.124 4.131 4.197 4.264
6 6.134 2.524 6.111 6.123 6.223 6.324
7 8.568 4.123 8.458 8.474 8.617 8.761
8 11.407 4.849 11.144 11.167 11.362 11.226
9 14.652 5.863 14.149 14.180 14.437 14.691
10 18.302 6.110 17.454 17.493 17.587 17.589
11 22.358 7.821 21.036 21.086 21.502 21.903
12 26.819 8.456 24.874 24.937 25.448 25.940

Table 7.2: The first twelve frequencies with quadrilateral mesh.

7.5.2 Supported beam subject to concentrated force

In this example, we can clearly see the need of stabilization for discrete gradient

method. Without any additional stabilization, the spurious modes caused by zero

average strain cannot be entirely excluded and may lead to wrong result although the

nodal cell pattern is not symmetric. A two-dimensional beam example as shown in

Figure 7.6(a) is employed to demonstrate spurious oscillation in DGM. The beam has

a length 10 with a width 1, and plane strain condition is assumed. The material is

linear isotropic (E = 500, ν = 0.3). The force of 0.2 is applied at the middle span. As

show in Figure 7.6(b) and (c), regularly and irregularly distributed 5× 21 nodes with

quadrilateral mesh are considered. Figure 7.7(a) and (b) are plots of the unstabilized

numerical solution (α = 0) corresponding to two types of node distribution. It is not

surprised to see the saw-teeth pattern in 7.7(a) because the symmetric nodal cells,

which are born by rectangular mesh, are prone to have zero average strain. However,
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large errors are still apparent in Figure 7.7(b) although perturbation of nodal position

changes the mesh to irregular but does not prevent spurious modes. Figure 7.7(c)

and (d) show the plots of stabilized numerical solution (α = 0.05) corresponding to

regular and irregular mesh, respectively. The stabilized term has eliminated the large

errors in Figure 7.7(a) and (b).

F

(a) (b) (c)

Figure 7.6: Beam model. (a) Supported beam subject to concentrated force; (b)
Regularly distributed nodes; (c) Irregularly distributed nodes.

(a) (b)

(c) (d)

Figure 7.7: Deformed configuration of the beam. (a) Regularly distributed nodes
without stabilization α = 0; (b) Irregularly distributed nodes without stabilization
α = 0; (c) Regularly distributed nodes with stabilization α = 0.05; (d) Irregularly
distributed nodes with stabilization α = 0.05.
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7.5.3 Mode analysis of square area

To test the capability of DGM in dynamic analysis and the effect of stabiliza-

tion parameter, we consider the other example of mode analysis. A 2× 2 square area

with regularly distributed 21× 21 nodes is employed. The material is linear isotropic

(E = 50000, ν = 0.3 and ρ = 1). We still employ two types of domain partitions and

compare their results with FEM. In Table 7.3 and 7.4, we list the first twelve eigenval-

ues calculated with different penalty. (The non-zero frequencies appear in pairs due

to geometric symmetry. Here, only one mode is reported for each pair.) Among these

eigenvalues listed in the two tables, the first three zero eigenvalues corresponding to

rigid body motions. We also can see that spurious modes existing as α = 0 and

α = 0.005. Clearly, a very small penalty is insufficient to suppress the spurious zero

energy modes in this example. However, as α = 0.05, 0.5, 1.0, the numerical solution

are very close to the result of FEM.

Figure 7.8 shows the first twelve mode shapes calculated by unstabilized DGM.

Among them, the fourth, fifth, sixth, eighth, eleventh and twelfth mode are all spu-

rious modes. Figure 7.9 shows the corresponding modal shapes after stabilization

α = 0.05. Evidently, all the spurious modes are eliminated.

7.5.4 Effect of the stability parameter

It is of interest to detect the effect of the penalty term on the accuracy and

convergence. We consider the problem of a cantilever beam bending illustrated in

Figure 6.4.

A convergence study is performed using regularly distributed nodes of 3× 11,
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Mode Tri. FEM Tri. DGM
α = 0 α = 0.005 α = 0.05 α = 0.5 α = 1

1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 43.481 32.129 43.111 43.134 43.310 43.482
5 46.476 32.857 47.185 47.071 47.426 47.792
6 49.346 35.327 47.557 48.644 48.908 49.150
7 56.831 35.345 48.613 57.140 57.838 58.597
8 70.552 35.872 48.871 68.531 69.507 70.312
9 83.005 35.906 55.312 78.555 80.722 82.576
10 95.437 37.377 55.656 90.351 92.902 95.351
11 96.454 39.674 56.817 93.852 95.850 97.587
12 100.854 41.050 57.066 95.132 97.113 99.073

Table 7.3: The first twelve eigenvalues with triangular mesh.

Mode Quad. FEM Quad. DGM
α = 0 α = 0.005 α = 0.05 α = 0.5 α = 1

1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 43.400 32.917 43.115 43.135 43.287 43.437
5 46.233 35.451 45.283 47.192 47.392 47.589
6 49.094 39.546 47.183 48.684 48.797 48.911
7 55.787 43.110 48.538 57.309 57.512 57.728
8 69.783 43.587 51.839 68.719 69.244 69.766
9 81.012 47.165 53.686 78.829 80.029 81.174
10 93.480 48.670 57.288 90.966 92.331 93.619
11 94.850 50.710 60.941 94.144 95.271 96.348
12 98.584 54.601 64.331 95.419 96.270 97.131

Table 7.4: The first twelve eigenvalues with quadrilateral mesh.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7.8: The first twelve modes calculated by DGM without stabilization (α = 0).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7.9: The first twelve modes calculated by stabilized DGM (α = 0.05).
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5 × 21, 7 × 31 and 9 × 41. Triangle and quadrilateral mesh are considered. Both

a compressible material (E = 500, ν = 0.3) and a nearly incompressible material

(E = 500, ν = 0.4999) are considered. Five seniors of α = 0.0, 0.005, 0.05, 0.5, 1

are tested to study the influence of the penalty. The error is measured by the same

function in Equation (6.1).

As is known, average strain methods usually have a softer stiffness. On the

contrary, FEM and SFEM have harder stiffness. Therefore, in our stabilized scheme

as 0 < α < 1, a proper selection of penalty may lead to more accurate result because of

the combined stiffness. While, as α = 1, the stabilization formulation degenerates to

SFEM and its behavior is same as the low order FEM. This assumption can be proved

by the convergence results shown in Figure 7.10 and 7.11. For compressible material,

the results become more accurate as α increases from 0 till to 0.5. When α = 1,

the accuracy is worse because the results just have the same accuracy as triangular

and bilinear finite element. For nearly incompressible material, the best convergence

is reached as α = 0.05. Moreover, it not surprised to see the appearance of volume

locking in stabilization formulation as α = 1 because the current formulation is same

as low order FEM and suffers with severe volume locking for incompressible material.

Overall, the stabilized formulation displays a better accuracy than low order FEM.

It is also more accurate than unstabilized scheme with a proper penalty. This test

confirms the that α = 0.05 is proper selection which is consistent with the suggestion

of Puso.
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Figure 7.10: Error norm versus number of nodes with compressible material. (a)
Triangle mesh; (b) Quadrilateral mesh.
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Figure 7.11: Error norm versus number of nodes with incompressible material. (a)
Triangle mesh; (b) Quadrilateral mesh.



106

CHAPTER 8
IMAGED-BASED DISCRETE ANALYSIS

8.1 Apply discrete gradient method in biomechanical analysis

The aim of developing discrete gradient method is to perform stress analysis

directly on domains represented by point-clouds as happens in medical images without

converting the model into a finite element mesh. The method computes the gradient

of unknown field variables at a node using discrete differentials involving a set of

neighboring nodes, and then establish the discrete governing equations by substitut-

ing the discrete gradient into a Galerkin weak form. Therefore, its computational

structure is very simple to implement since it bypasses the numerical complications

associated with the construction of implicit shape functions in meshfree methods. It

has been demonstrated that the method retains the accuracy and convergence rate

of the displacement FEM but exhibits a locking-free behavior in the incompressible

limit. Hereby, the method offers a greater flexible modeling tool to conduct mechani-

cal analysis on point-cloud representations of patient-specific organs without resorting

to finite element method.

On the other hand, it is necessary to form Delaunay triangulation among the

complicated point-cloud model because of the need to define nodal cells and boundary.

Please notate that forming Delaunay triangulation is not equal to creating triangular

mesh for FEM. A correctly identified boundary is required in defining nodal cells

and applying boundary conditions for analysis. To carry out mechanical analysis

directly upon image-based model with the discrete solvers, the procedure consists of
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the following steps:

1. Convert pixels or voxels of images to material points by following some selection

criteria and form a point-cloud model.

2. Implement Delaunay triangulation among the point-cloud model.

3. Identify boundary of the point-cloud model and remove spurious triangles or

tetrahedrons.

4. Partition the domain into a set of non-overlapping, node-centered cells using

existing triangles or tetrahedrons.

5. At each node, approximate the gradient of the primary unknown by a linear

combination of nodal values in a set of neighboring nodes.

6. Substitute the gradients into a Galerkin weak from to derive the algebraic equa-

tions governing the nodal variables.

8.2 Extract point-cloud model from medical image

Radiographic images register different physical constituents (soft tissue, bone,

fluid etc) by different image types. In our work, we employ a basic type of gray-

scale image, also known as gray level image. In this type of images, the pixel values

represent intensity within some range. Therefore, it is straightforward to identify a

material constituent, or a specific organ comprised of certain material by extracting

pixels within certain range of gray-scale value. In addition, pixel coordinates can

be easily transferred to physical spatial coordinates with the resolution information
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(between pixels and slices) of images. Representing each pixel by a point yields

point-cloud model of organs at the pixel resolution.

Figure 8.1 shows a cross section scan of an aorta with 0.2 mm resolution.

Since the data matrix in this image is saved in the format of “unit8”, We select pixels

with gray-scale values in the range of 200 − 255 to correspond material points in

the aorta wall. By retaining the pixels within the given range we obtain a discrete

representation of the aorta at the pixel-resolution as shown in Figure 8.3(a).

Figure 8.1: Scanning image of aorta.

However, pixel-resolution model usually contains too many points and the

model size may be prohibitively large for mechanical analysis. To save the compu-

tational cost, the model can be made coarse by lumping several pixels into a node.

To fulfill this idea, the notion of window is introduced. Moreover, this concept will

play important role in our succeeding development. In our work, a two-dimensional

window is defined as a square that size is large enough to contain n × n pixels. In

three-dimensional applications, the window is a cube that contains n× n×m pixels.
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Here the m denotes the number of image slices. Consequently, image(s) can be di-

vided into an array of non-overlapping windows, which cover the entire image(s). By

concentrating pixels inside a window into one material point, the coarser models can

be derived. Similar to the determination of the mass center of several particles, the

position of the material point in one window is calculated according to

X =

∑N
I XIϕI∑N

I ϕI

, (8.1)

where XI and ϕI are, respectively, the spatial coordinates of the each pixel and

the its gray-scale value, N represents all pixels in the window. Figure 8.2(a) shows

several pixels and defined windows in the size of containing 3× 3 pixels. And Figure

8.2(b) shows the material points after lumping pixels in windows. Consequently, the

points in the model have been reduced with 9-fold. Following the same way, a point-

cloud aorta model containing 895 material points is derived and is shown in Figure

8.3(b). The model is extracted from above CT image using 3× 3 windows, which are

0.6mm × 0.6mm in spatial size. Notably, the procedure can be made with minimal

user interference, or even fully automated.

8.3 Tessellation of point-cloud model

The implementation of discrete gradient method relies on the domain tessel-

lation to identify the neighbouring relation between points. In our work, an open

source program Qhull [3] is employed to perform Delaunay triangulation on derived

point clouds. However, this general algorithm of tessellation cannot identify the con-



110

(a) (b)

Figure 8.2: windows and pixels grouping. (a) Windows containing 3 × 3 pixels; (b)
No more than one material point can exist in each window after pixels grouping.

(a) (b)

Figure 8.3: Aorta point cloud model extracted from image. (a) Point-cloud model
extracted by pixel resolution. (b) Point-cloud model extracted by window size 3× 3.
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figuration of point clouds and may produce some spurious triangles or tetrahedrons,

which lead to a wrong identification of nodal cells and boundary of point clouds. Fig-

ure 8.5(a) shows Delaunay triangles formed by Qhull upon a set of points in a plane.

Obviously, several points are wrongly connected together through spurious Delau-

nay triangles. The incorrectly defined relationships among points not only throw

the point-cloud model into confusion but also lead to wrong analysis result. There-

fore, the point clouds need some reconstruction after the triangulation to delete those

incorrect connections among points. For general point clouds, available method is

α-shape, which was introduced by Edelsbrunner [40, 41]. α-shapes can provide the

mathematical framework and a general algorithm to define of the hierarchy of point

clouds through Delaunay triangulation, and some applications of α-shape upon point

clouds can be found in [24, 30, 31]. However, we propose a more efficient algorithm

that works well for point clouds extracted from images with aid of their special data

structure.

8.3.1 Two-dimensional triangular tessellation

For the window array defined over an image, each window is always surrounded

by other neighbouring windows, which can be called adjacent windows. Hereby, a

window can have eight adjacent windows at most. By construction, each window

only contains no more than one material point. Therefore, we can identify all points

in adjacent windows are the adjacent points of the material points occupying the

central window. For example, in Figure 8.4, point A has eight adjacent points but

point B has seven. With this predefined adjacent relationships among all points, we
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define a triangle is not spurious triangle when at least one of its three vertexes is

simultaneously adjacent to the other two. Therefore, we inspect every triangle after

the implementation of Delaunay triangulation and delete all spurious triangles. All

existing triangles will give a correct tessellation of the point clouds. The result can

be seen in Figure 8.5(b)

In addition, care must be exercised to “hanging points” (points do not properly

connect to the rest of the clouds) before the tessellation. If a point just has one

adjacent point, we think this point is isolated and should be removed from model.

A B

Figure 8.4: Adjacent points defined by windows.

8.3.2 Three-dimensional tetrahedral tessellation

Following the above definitions, a material point may have at most 26 adjacent

points in three-dimensional case. If one point has less three adjacent points, this point

is considered as “hanging points” and should be deleted before tessellation. Similar

to two-dimensional definition, a tetrahedron is not a spurious tetrahedron if one of



113

(a) (b)

Figure 8.5: Delaunay triangulation of point clouds. (a) Delaunay triangulation be-
fore removing spurious triangles; (b) Delaunay triangulation after removing spurious
triangles.

its vertexes is simultaneously adjacent to the other three. Moreover, the definition

of spurious tetrahedron is not unique. For example, a spurious tetrahedron can be

defined if its four vertexes are not simultaneously adjacent to each other. It can be

imaged that different definitions may lead to various profiles of point-cloud model. As

well as, such definitions need to consider the requirements of accuracy and boundary

smoothing.

8.4 Boundary tracking of point-cloud model

For the reason of applying boundary conditions before any analysis, it is nec-

essary to identify the boundary facets of a point-cloud model. This process relies on

the existing triangles or tetrahedrons. A general method is to inspect each existing

facet and examine whether this facet is shared by other triangles (tetrahedrons) or

not. If the facet only exists in one triangle (tetrahedrons), this facet will be consid-

ered as boundary facet and its vertices will be the boundary points. In the end, all
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the boundary facets will form the boundary of this model. Since this algorithm needs

to search all facets, it is very time consuming especially for large scale model. How-

ever, we can reduce the searching range and save time using the predefined adjacent

relationships among points.

By observing Figure 8.4, we can find that points with eight adjacent points

always stay inside the domain of clouds and are interior points. On the contrary,

those points, which have less eight adjacent points, can be considered as “boundary

points”. Please notice that we use “boundary points” here to indicate these points are

candidates of boundary points but not the indeed ones. In remaining triangles, edges

only connecting two “boundary points” will be picked up for further consideration.

Figure 8.6(a) shows the identified boundary before removing spurious triangles. It

can be seen that this boundary cannot accurately represent the profile of this sets

of points. In Figure 8.6(b), it shows the defined boundary of the point cloud after

removing all spurious triangle. And, the boundary is more coincident with the profile

of the point clouds.

This procedure can be easily expanded to three-dimensional application. In

three-dimensional case, we can define a point as “boundary points” only if this point

has less than 26 adjacent points. The other searching process to define boundary is

exactly same as process in two-dimensional boundary tracking.

Overall, the proposed method to extract point-cloud model from images is

very simple without requiring user-specified algorithmic parameters such as the α.

This method considerably reduces the computer time during domain tessellation and
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(a) (b)

Figure 8.6: Boundary defined by window technique. (a) Boundary of point cloud be-
fore removing spurious triangles; (b) Boundary of point cloud after removing spurious
triangles.

boundary tracking.

8.5 Discrete stress analysis on point-cloud model

8.5.1 The inflation of aorta

The point-cloud model shown in Figure 8.3(b) is assumed to represent the

stress free configuration of the aorta. The deformed configuration and wall stress un-

der 100 mmHg are sought. Although aortic tissue typically exhibits anisotropic non-

linear behavior, for demonstration purpose, we model the wall tissue by an isotropic

hyperelastic energy function

W =
µ1

2
(I1 − 3) +

µ2

4
(I1 − 3)2,

where I1 = tr (FTF). A penalty energy κ
2
(log(J))2 with a large value κ is augmented

to the energy function to introduce nearly incompressibility. The following numerical
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values are used:

µ1 = 100, µ2 = 5, κ = 1000000.

To simplify the problem we also ignore the residual stress, which is known to exist

in aortas. Displacement constraints just enough to eliminate rigid body motion are

imposed. The pressure is applied on the inner wall as a follower-force.

Stress analysis is first performed on the point model extracted by 3 × 3 win-

dows. For comparison, an alternative FE model consisting of mainly four-node mixed

element [88] is also implemented. While the quadrilateral mesh requires a manual cre-

ation of the geometric model (the cross section area) first. The area is then meshed

in commercial software.

Figure 8.7 shows the distributions of the von Mises stress from the two models.

As shown from the stress contours, the stress results from all models are close to each

other. The point model results however appear to be closer to that of the quadrilateral

mesh, indicating that the discrete method achieves nearly the same accuracy as the

four-node mixed element in this problem.

8.5.2 The impact of three dimensional skull

In this example, we demonstrate the propagation of stress wave in a skull

under impact. A life-size plastic skull model is scanned by CT with 0.4 mm resolution

(between pixels and slices). The entire image stack contains 400 CT images. In each

image, the gray-scale values are stored in a 512× 512 data matrix. To extract three-

dimension model with accurate bone structure, we employ 4 × 4 × 4 windows in
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CHAPTER 9
CONCLUSION

The dissertation presents a novel method belonging to discrete solvers, which

work directly on nodal values and discrete differentials without introducing continuous

approximation of the primary unknown. The gradient of the field variable is computed

using discrete differentials for arbitrary nodes and then is incorporated into a weak

form of Galerkin formation. The most noteworthy attribute in the present method is

the absence of continuous interpolation (or approximation) of the unknown variable.

Compared to other continuum based average strain methods, the gradient in the

present approach is computed directly from discrete nodal values using a closed-form

formula. The method therefore bypasses the numerical difficulties associated with the

construction of implicit shape functions in either meshfree methods or element-base

methods. Meanwhile, it avoids the loss of interpolantory property, which is common

to meshfree shape functions.

Voronoi diagram and general convex polygons are employed to tessellate the

domain into a set of non-overlapping nodal cells for the identification of nodal supports

in discrete differentials. The tessellation process is fully automatic and does not

require algorithmic parameters such as the size of influence region. Over each nodal

cell, the constructions of gradient interpolants are proposed to compute gradient

of field variable. In addition, all developed gradient interpolants show that they

have a common tensorial identity property, although the constructions of gradient

interpolants are different with various definitions of supporting domain,
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Mathematically and numerically, it has been proved that this discrete gra-

dient method automatically satisfies the derivative consistency conditions and the

patch test. In addition, with the Kronecker delta properties, it is straightforward

to introduce essential boundary condition and to couple the method with the finite

element method. Moreover, numerical tests show that the method not only has com-

parable accuracy and convergence rate as the displacement finite element method,

but also displays robustness for large deformation simulations and hyper-elasticity.

This method resists numerical locking in the incompressibility limit too.

The stability of discrete gradient method is fully investigated. With analytic

solution and numerical examples, the existence of spurious modes in current method

is exhibited. To suppress the instability, a stabilization scheme is presented under the

Galerkin framework with penalized strain energy. The modified formulation is tested

against several benchmark problems. Moreover, the penalty influence to stability,

accuracy and convergence is studied. Overall, the modified formulation shows to be

stable and gives a superior performance for both compressible and nearly incompress-

ible material.

Since of the newly developed method is feasible to be implemented in the stress

analysis of point-cloud models, applications in biomechanical field are demonstrated.

To fulfill the promise of delivering automated analysis, an efficient method is devel-

oped to automatically extract point-cloud models from medical images, which pro-

vide depiction for complicated anatomies. With exhibited two and three-dimensional

examples, the method demonstrates its advantages as a flexible numerical tool for
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engineering analysis, particularly in biomechanical applications.
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[78] R. Müller and P. Rüegsegger. Three-dimensional finite element modeling of non-
invasively assessed trabecular bone structures. Jouranl of Medical Engineering
and Physics, 17:126–133, 1995.

[79] E. Onate, M. Cervera, and O. C. Zienkiewicz. A finite volume format for struc-
tural mechanics. International Journal for Numerical Methods in Engineering,
37:181–201, 1994.

[80] E. Onate and S Idelsohn. A mesh-free finite point method for advective-diffusive
transport and fluid flow problems. Computational Mechanics, 21:283–292, 1998.



130

[81] E. Onate, S. R. Idelsohn, O. C. Zienkiewicz, and R. L. Taylor. A finite
point method in computational mechanics applications to convective transport
and fluid flow. International Journal for Numerical Methods in Engineering,
39:3839–3866, 1996.

[82] V. Pavlin and N. Perrone. Finite difference energy techniques for arbitrary
meshes applied to linear plate problems. International Journal for Numerical
Methods in Engineering, 14:647–664, 1979.

[83] N. Perrone and R. Kao. A general finite difference method for arbitrary meshes.
Computers and Structures, 5:45–57, 1975.

[84] M. A. Puso, J. S. Chen, E. Zywicz, and W. Elmer. Meshfree and finite element
nodal integration methods. International Journal for Numerical Methods in
Engineering, 74:416–446, 2008.

[85] M. A. Puso and J. Solberg. A stabilized nodally integrated tetrahedral. Inter-
national Journal for Numerical Methods in Engineering, 67:841–867, 2006.

[86] A. A. Samarskii. On monotone difference schemes for elliptic and parabolic
equations in the case of a nonselfadjoint elliptic operator. Computational Math-
ematics and Mathematical Physics, 5:548–551, 1965.

[87] R. Sibson. A vertor identity for the dirichlet tessellation. Mathematical Pro-
ceedings of the Cambridge Philosophical Society, 87:151–155, 1980.

[88] J. C. Simo and M. S. Rifai. A class of mixed assumed strain methods and the
method of incompatible modes. International Journal for Numerical Methods
in Engineering, 29:1595–1638, 1990.

[89] J. C. Simo, R. L. Taylor, and K. S. Pister. Variational and projection meth-
ods for the volume constraint in finte deformation elasto-plasticity. Computer
Methods in Applied Mechanics and Engineering, 51:177–208, 1985.

[90] N. Sukumar. Voronoi cell finite difference method for the diffusion operator on
arbitrary unstructured grids. International Journal for Numerical Methods in
Engineering, 57:1–34, 2003.

[91] N. Sukumar and J. E. Bolander. Numerical computation of discrete differen-
tial operators on non-uniform grids. Computer Modeling in Engineering and
Sciences, 4:691–705, 2003.



131

[92] N. Sukumar, B. Moran, A. Yu Semenov, and V. V. Belikov. Natural neighbour
Galerkin method. International Journal for Numerical Methods in Engineering,
50:1–27, 2001.

[93] N. Sukumar, B. Noran, and T. Belytschko. The natural element method in
solid mechanics. International Journal for Numerical Methods in Engineering,
43:839–887, 1998.

[94] N. Sukumar and A. Tabarraei. Conforming polygonal fintie elemets. Interna-
tional Journal for Numerical Methods in Engineering, 61:2045–2066, 2004.

[95] J. W. Swegle, S. W. Attaway, M. W. Heinstein, F. J. Mello, and D. L. Hicks.
An analysis of smoothed particle hydrodynamics. Sandia Report SAND93-2513,
1994.

[96] J. W. Swegle, D. L. Hicks, and S. W. Attaway. Smoothed particle hydrodynam-
ics stability analysis. Journal of Computational Physics, 116:123–134, 1995.

[97] R. L. Taylor, J. C. Simo, O. C. Zienkiewicz, and A. C. H. Chan. The patch
test: A condition for assessing FEM convergence. International Journal for
Numerical Methods in Engineering, 22:39–62, 1986.

[98] A. N. Tichonov and A. A. Samarskii. Homogeneous difference schemes on
nonuniform nets. Computational Mathematics and Mathematical Physics,
2:812–832, 1962.

[99] S. P. Timoshenko and J. N. Goodier. Theory of Elasticity. McGraw Hill, New
York, 3rd edition, 1987.

[100] E. Tonti. A direct discrete formulation of field laws: The cell method. Computer
Modeling in Engineering and Sciences, 2:237–258, 2001.

[101] B. van Rietbergen, H. Weinans, R. Huiskes, and A. Odgaard. A new method to
determine trabecular bone elastic properties and loading using micromechanical
finite-element models. Jouranl of Biomechanics, 28:69–81, 1995.

[102] V. Vidal, J. Bonet, and A. Huerta. Stablized updated lagrangian corrected sph
for explicit dynamics problems. International Journal for Numerical Methods
in Engineering, 69:2687–2710, 2007.

[103] J. W. Yoo, B. Moran, and J. S. Chen. Stabilized conforming nodal integration
in the natural-element method. International Journal for Numerical Methods
in Engineering, 60:861–890, 2004.


	Recommended Citation
	University of Iowa
	Iowa Research Online
	2009

	Discrete gradient method in solid mechanics
	Jing Qian




