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The second order solution of Boussinesq’s problem
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ABSTRACT: In this document, we have proposed a second order solution toBoussinesq’s problem (Boussinesq
1885), which allows us to account for the new experimental evidence (Ferretti & Bignozzi 2012, Ferretti 2012b)
on the stress field induced by aircraft traffic in concrete pavements. In particular, the second order solution is
able to describe the tensile state of stress acquired in the proximity of the contact area and not accounted for
in the classical solution of Boussinesq’s problem for a homogeneous linear-elastic and isotropic half-space. The
second order solution also allows us to evaluate the effect of the elastic constants on the stress field, improving
the solution of Boussinesq in this second case also.

1 THE FIRST ORDER ELASTIC SOLUTION

1.1 First integral of the equilibrium problem

The first solution of Boussinesq is based on the sim-
ilarity between the equilibrium equations in terms of
displacements, with the body forces per unit volume,
fx, fy and fz , set equal to zero:

where I1ε is the bulk strain, and the three equations:

that are satisfied by any potential function P for which
the Laplacian is equal to zero:

The use of the equilibrium equations with the body
forces set equal to zero for studying the stress field

induced in the soil by a point-load is allowed by
the superposition principle: assuming a linear-elastic
behavior for the soil, we can separately analyze and
superpose the stress field induced in the soil by the
point-load and the stress field induced in the soil by
the weight of the soil itself.
The similarity between the two systems of Equa-

tions 1 and 2 is established in the assumptions:

The function P chosen by Boussinesq is the logarith-
mic potential � for the prefixed point (x, y, z) of the
semi-space under the surface, at the distance r from
the point Q ≡ (x1, y1, 0) of the load surface:

where dm is given by ρ(x1, y1), the mass density for
unit surface at the point Q:

The solution of the equilibrium problem in terms of
potentials is:

Since Equations 9 satisfy the conditions of equilib-
riumbut do not provide the right displacement field for
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z → ∞ (Boussinesq 1885), Boussinesq used the first
derivative ∂�/∂z instead of the logarithmic potential�
for the potential P in Equations 2, which is allowable
since ∂�/∂z still gives a Laplacian equal to zero:

For the points of the surface, Boussinesq provides the
results:

The third ofEquations 15 and the first twoofEquations
13 tell us that this is the case in which the boundary
conditions consist in giving the normal component of
the load and assuming the horizontal displacements on
the surface to be equal to zero.
Adiscussion of the original treatment ofBoussinesq

(Boussinesq 1885) can be found in Ferretti (2012a),
where it is pointed out how it seems unnecessary
to perform integrals on the whole load surface – as
Boussinesq does – since the aim of the treatment is
to find the solution for a single point-load, and not
for a distributed load. In effect, after obtaining the
general solution, Boussinesq gives the point-load solu-
tion by substituting the integrals with their integrands,
that is, by causing the dimensions of the load surface
to vanish. It therefore seems possible, besides being
simpler, to build the point-load solution directly, by
defining the potentials for the infinitesimal superficial
neighborhood of the point:

The solution following by the position in Equation 17
is:

For z → 0 (points of the surface), we find:

1.2 Second integral of the equilibrium problem

The second solution follows from the position:

Due to Equation 3, in this second case the bulk strain
is equal to zero:

and the equilibrium equations expressed by Equations
1 are identically satisfied.
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Byusing the logarithmic potential given inEquation
16 instead of �, the second solution of Boussinesq is
substituted by the following (Ferretti 2012a):

and, for the points of the surface:

1.3 Third integral of the equilibrium problem

For the third solution, Boussinesq assumes:

which are the plane strain conditions.
As for the second solution, in this case also, the bulk

strain is equal to zero and the equilibrium equations
are identically satisfied, due to Equation 3
Since the bulk strain is equal to zero, the condition

of plane strain implies plane stress in each point of the
body. The stress field is given by:

where:

This is the solution for the case in which the normal
component of the external load is set equal to zero
and the two shear components stand in the relationship
represented by Equation 32. The displacements take
place horizontally.

1.4 Elastic solution for a point-load perpendicular
to the surface

Due to the superposition principle, it is always possi-
ble to find further solutions to the equilibrium problem
by combining the former three solutions with each
other. Along these lines, Boussinesq formed two lin-
ear combinations of Equations 11 and 24. The linear
combination giving the solution of the point-load per-
pendicular to the surface is obtained by multiplying
Equations 11 by the inverse of −4πµ and Equations
24 by the inverse of −4π(λ + µ). The multiplying
factors of the linear combination have been chosen
specifically to equal pz and ρ(x, y):

and, consequently, also the external load dF anddm:

Due to the superposition principle, the same multiply-
ing factors can be taken to build a second linear com-
bination, providing the solution in terms of stresses. In
the case of infinitesimal load surface, the well-known
solutions of Boussinesq for a point-load perpendicular
to the surface is:

where the stresses are independent of the elastic
coefficients of the medium.
In Ferretti (2012a), the elastic solution for a point-

load perpendicular to the surface has been derived as
linear combination of Equations 18 and 26, for dis-
placements, and of Equations 20 and 27, for stresses,
providing:
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for a point inside the soil, and

for the points of the surface.

2 THE SECOND ORDER ELASTIC SOLUTION

2.1 A second order solution of the first integral

Following the spirit of the superposition principle and
noting that the partial derivatives of any arbitrary order
of the function ψ, defined in Equation 16, have a zero
Laplacian (i.e. they satisfy the condition ∇2 = 0), it is
possible to refine the elastic solution of Boussinesq by
adding to it a further solution of Equations 2, obtained
by substituting ψ with one of its derivatives of second
order. This observation will be used here in order to
find a further form of the first integral, which, com-
bined to the former form and the second integral, could
provide a stress solution to the vertical point-load prob-
lem that also depends on the elastic constants of the
soil.
Assuming:

we find:

inside the soil, and:

for z → 0.
Since px and py are equal to zero, Equations 45

may be added to the combined solution of first order
without changing the nature of the solved problem,
which still is a vertical point-load problem. Moreover,
due to the infinite value achieved by pz for z, r → 0,
the second form of the first integral seems to be useful
for building the combined solution in all the points of
the soil apart from the one of load application.

2.2 Combined solution

The combined solution of second order is built bymul-
tiplying Equations 45 for – C and adding the result to
Equations 38. The resulting stress field (for r �=0) is
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now in relationship with the elastic constants of the
soil:

As far as the third of Equations 49 is concerned, we
may easily verify that the new terms (the ones which
are multiplied for C) significantly modify the normal
stress when approaching the surface, while they are
negligible at great depths. Indeed, for z → 0:

while, for z → ∞, the third of Equations 49 gives the
combined solution of Section 1.4.

From the comparison between Equations 50 and 51, it
is clear that, for C > 0, the normal stress for z → 0 is
opposite in sign to the normal stress for z → ∞:

Therefore, near to the surface, the compressed soil
is subjected to a normal stress of traction. This is a
result not accounted for in the solution of Boussinesq
and, together with the dependence of σz on the elastic
constants, represents themost important novelty of the
combined solution of second order.
From Equation 52 we can also argue that, as σz is

a continuous function, there exists a finite value of
depth for which the normal stress is equal to zero.
Setting z0 = z0 (r, C, λ, µ), the function giving the
depth for which σz = 0, from Equations 49 we find
the relationship:

in which the banal solution:

has been eliminated.
As can be easily verified, for z → ∞ the combined

solution of second order is equal to the solution of
Boussinesq even for the displacement field.

Figure 1. Parametric analysis on theYoung modulus, E.

Figure 2. Parametric analysis on the Young modulus, for
the vertical stress contours on the vertical cross-section
(all distances are in mm).

3 NUMERICAL RESULTS

3.1 Point-load perpendicular to the surface

The plots of the vertical stress and the vertical stress
contours of second order for a prefixed Poisson’s ratio,
υ, and variable values ofYoung’smodulus,E, are given
in Figure 1 for a plane near to the surface and in Fig-
ure 2 for a vertical cross-section passing through the
point load, respectively.The parametric analysis on the
Poisson’s ratio for a prefixed E is shown in Ferretti
(2012a).
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Figure 3. Vertical stress under the twin wheels of an aircraft
for rectangular contact areas and uniform load.

Figure 4. Vertical stress contours on the vertical
cross-section for rectangular contact areas and uniform
load (twin wheels).

The numerical solution of second order shows two
positive peaks of vertical stress in the proximity of the
application point of compression load (Fig. 1), in total
agreement with the experimental data for vehicular
loading shown in Ferretti & Bignozzi (2012) and Fer-
retti (2012b). This result gives a numerical proof that a
tensile state of stress arises on the surface of soils and
pavements when subjected to compression loads, with
the point in which the vertical stress change in sign
that is also a point in which the vertical stress does
not depend upon the value of E (Fig. 1). Since both
soil and concrete are assumed as not being resistant to
traction – to be on the safe side – the tensile state of
stress must be considered with particular attention in
these materials.
Due to the tensile state of stress, there exist two

families of stress contours (Fig. 2): one family for
the tensioned soil and one family for the compressed
soil, with the two families separated by straight lines.
Moreover, the parametric analysis on the vertical
cross-section shows that greater values of E increase
the vertical stresses at each depth without modifying
the shape of the iso-lines of stress, which change in
size homothetically (Fig. 2).

3.2 Distributed load perpendicular to the
surface

In order to evaluate which the interaction effect is of
two adjacent loaded areas, the vertical stress and the

vertical stress contours of second order for a verti-
cal load that is uniformly distributed over two contact
areas of rectangular shape have been plotted in Figures
3, 4, respectively. All the dimensions in Figures 3, 4
are those typical of two twin wheels in an aircraft. The
existence of a tensile state of stress near the wheels
is well evident even in this last case. Moreover, the
interaction effect make particularly severe the positive
stresses between the wheels.
Further results for contact areas of circular, rect-

angular and elliptic shape together with uniform and
parabolic laws of external pressure distribution may
be found in Ferretti (in prep.).

4 CONCLUSIONS

In this paper, we have discussed Boussinesq’s solution
in the light of new experimental findings on the stress
distribution in a half-space subjected to point-loads.
The original work of Boussinesq has been extended to
provide a second order solution.
The second order solution has shown that a com-

pression load always generates positive stresses at the
surface, in the proximity of the load. The existence of
a tensile state of stress, not accounted for in Boussi-
nesq’s solution, could explain the several observed
mechanisms of premature damage that affect concrete
pavements subjected to vehicular loading, particularly
when twin wheels are involved.
The second order solution also allows us to evaluate

the effect of the elastic constants on the stress field,
which, in this second case also, is an improvement to
Boussinesq’s solution.
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