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Abstract

Static and dynamic elastic moduli of Calcare Massiccio mudstone–limestone are measured
using respectively a standard uniaxial compression test, and measurement of ultrasonic ve-
locities. No significant frequency dependence is found for Calcare Massiccio, for which we
measured a Young modulus of (75 ± 7) GPa and a Poisson ratio of (0.28 ± 0.02). The two
techniques are also tested on a well known rheologic material providing accurate results. Fi-
nally, the effective elastic modulus is also evaluated through an identification model based on
the energy dissipated during rupture. Calcare Massiccio is found to behave quite linearly and
to develop a very low amount of damage before specimen rupture.
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1 Introduction

Elastic constants are relevant parameters whenever stresses and strains are considered. Two are

the main methods used to measure them: (a) the static method, which is based on the measurement

of the deformation induced in a material by the application of a known force; (b) the dynamic

method, which implies measuring the ultrasonic body wave velocities. Usually, these two values do

not coincide due to inelastic effects. In spite of this, the lack of available data forces one to use

them indifferently, albeit with persisting doubts about the reliability of such an operation.

For what regards the Earth’s crustal rocks the problem is aggravated by the fact that only dy-

namic measurements are readily provided by seismic waves while static measurements are possible

only after extracting samples and taking them to the laboratory, an operation which is seldom

possible and in all cases very expensive. As a consequence, the use of dynamic measurements in

modeling is ubiquitous, yet its appropriateness is at doubt [2].

The scope of the present paper is to establish the difference in static and dynamic behavior in

a compact homogeneous mudstone–limestone rock Calcare Massiccio, which is very interesting per

1



se because it is the typical rock of the seismic focal regions in the Apennines, central Italy [3], and

for which data are totally lacking.

The static and dynamic moduli are measured using the standard techniques: uniaxial compres-

sion test, and measurement of ultrasonic velocities, which are also tested on a rheologic material,

poly-methyl-methacrylate (PMMA), for which there exists a wealth of measured data at all fre-

quencies, thus guaranteeing against systematic errors in the specific apparatuses we use.

A major difference between the static and dynamic measurements is the amplitude of the

involved strains: around 10−7 of the dynamic measurements, up to 10−3 for the static ones. In

the case of the static measurements on brittle materials this involves a progressive damagement of

the sample from the earlier steps of the compression test. This induces a progressive alteration of

the structure of the specimen making it possible to confuse material and specimen properties.

A proposal to overcome this problem has been presented by Ferretti [1]. Material properties

can indeed be estracted from experimental data on the basis of an identifying model which takes

into account the cross-sectional area decrement due to damage. An effective static modulus is thus

determined which relates directly to the material properties.

2 Standard Methods

2.1 Dynamic Moduli

The samples of Calcare Massiccio were taken in the Casavecchia Fratelli quarry located in Cagli

(Pesaro), central Italy. The chemical composition is reported in Table 1. The apparent density is

ρ = (2.71± 0.03) kg/m3 and the estimated porosity is φ = (5 ± 2)%.

The high frequency moduli have been obtained by measuring the velocities vP and vS of lon-

gitudinal and transverse elastic waves. Isotropy was verified within experimental errors (1%) by

measuring the wave velocity on a cubic sample of 10 cm side. The elastic moduli were thus

calculated using the equations:

E = ρ
v2

S(3v2

P − 4v2

S)

v2

P − v2

S

(1)

ν =
v2

P − 2v2

S

2(v2

P − v2

S)
(2)
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Measurements at 1 MHz have been made at EPL1 either using two P-wave VP-1093 Pinducer

transducers in transmission configuration or a single Panametrics transducer in pulse-echo config-

uration (V103 for P waves, V153 for S waves). Measurements at 75 kHz have only been performed

for P-waves using custom transducers at the LARM laboratory. The Young modulus has been

evaluated through:

E = ρv2

P

(1 + ν)(1 − 2ν)

(1 − ν)
(3)

using the Poisson ratio measured at 1 MHz2.

The results of the measurements on 12 prismatic Calcare Massiccio samples (20x5x5 cm) are

reported in Table 3. It should be noted that while at 1 MHz the wavelength of 6 mm is small in

relation to the sample transverse thickness, this is not the case at 75 kHz for which the wavelength

is 4 cm. This could produce waveguide modes resulting in underestimates of the body wave velocity.

We verified by measurements on PMMA that this does not happen because the first peak of the

direct body wave is well distinguishable before the arrival of the waves reflected by the side walls.

Moreover, the measurements are in accord with the preliminary measurements on the 10 cm side

cubic sample.

2.2 Static Moduli

The measurement of the static elastic moduli has been performed following the standard pro-

cedure UNI97243 by using an AMSLER uniaxial compression machine at the LARM laboratory4.

Following this procedure, prismatic specimens (20x5x5 cm in size) have been subjected to a low

compressional displacement rate (about 0.1 mm/min), both in a monotonic load up to failure, and

by several loading cycles with progressively increasing loads. The longitudinal and transverse strain

in the middle cross-section have been estimated by averaging the values measured by orthogonal

strain gauges (XY 91 - 6/120, produced by HBM) in the middle of the four lateral faces. The

average stress on the same section has been estimated by dividing the applied load by the nominal

cross-sectional area.

1Earthquake Physics Laboratory, Dipartimento di Fisica, Università di Bologna, Italy.
2The Poisson ratio is not expected to depend significantly on frequency in an isotropic medium since it is the

ratio of two orthogonal deformations that should have a similar dependence on frequency.
3Ente Nazionale Italiano di Unificazione - http://www.uni.com - Standard norm: UNI 9724-8:1992 - ICS code:

91.100.15. Title: Stones. Determination of the elastic modulus (monoaxial).
4Laboratorio di Resistenza dei Materiali, Facoltà di Ingegneria, Università di Bologna, Italy.
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It is important to note that the ‘static’ measurements are not really static since the tests have

a typical duration of about 20 minutes, and have therefore associated a frequency of ' 10−3 Hz –

which is large in relation to tectonic loading rates.

The average stress versus strain curves for the monotonic tests on specimens C2, C5 and C6

are shown in Fig. 1, the cyclic test on specimen C1 is shown in Fig. 2. Both cases are consistent

with a high degree of linearity of Calcare Massiccio. The values of the tangent Young modulus

were determined by linearly fitting the data on a moving window and then taking the low strain

limit. The results are reported in Table 2, and exhibit a small dispersion:

E = (77± 1.5) GPa

This falls within the range of compact limestones, which is comprised between 30 and 90 GPa

[4] and is also consistent with the value obtained by the cyclic test. The average Poisson ratio

is ν = (0.43 ± 0.01) for the monotonic tests and (0.30 ± 0.01) for the cyclic test (see Table 2).

It appears rather high for a Limestone, but this value is apparently not well constrained by this

measurement technique, since the dilatancy related to the opening of small cracks induces an

overestimate of the transverse strain measured at the external surface (Fettetti et al. 2003??).

We remark that the Young modulus obtained using the average longitudinal strain - i.e. the

measured plate displacement divided by the specimen length - is generally 10 to 20% lower than

the previous one (obtained by strain gauges). This could be due to a well known problem of the

uniaxial test: notably, due to the friction on the loading plates, the contacting faces are not free to

laterally expand during longitudinal compression. This implies inhomogeneous deformation with

a higher strain in the central zone of the specimen. By a Finite Element simulation of this loading

configuration, we verified that for an elastic material the tangent modulus - determined in the

same way as in the experimental procedure described above - provides an accurate estimate of the

Young modulus and Poisson ratio within 1%.

The difference must then be imputed to the inevitable damage of the external edges of the

specimen near the loading plates, which results in a local weakening of the material and in a

change in its structural behavior. For this reason it is advisable to measure the local strain in the

central region of the specimen which is both undamaged and uniformly stressed (Ferretti et al.,

200???). A method to takle with these problems is described in next section.
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3 Effective static moduli

The object in testing is never the material, but a small structure interacting with the test-

machine. Thus, experimental results univocally characterize the behavior of the specimen-test

machine system. The present section will describe the derivation and application of an identifying

model that allows to separate the material properties from the evolution of the structural properties

of the sample.

3.1 Generalities on the identifying model of the effective law

The identifying model adopted here has been developed on concrete in order to tackle with the

non-objectiveness of the standard approach in front of the size-effect and to investigate the physical

origin of strain-softening, i.e. the decline of stress at increasing strain. In fact, in the standard

approach, strain-softening is associated with a phase of material instability which has questionable

physical meaning. On the basis of the relationship between vP and E (Eq. 3), strain-softening was

considered as an unacceptable feature for a constitutive equation [6], since the longitudinal wave

speed, vP , ceases to be real if E becomes negative. Moreover, it has been questioned [7, 8, 9, 10]

whether strain-softening in a continuum is a sound concept from the mathematical point of view.

The question was whether or not strain-softening is a real material property or merely the result

of inhomogeneous deformation caused by experimental techniques (cf. [11] and references therein).

The new proposal was inspired by the argumentations from Hudson et al. [5] concerning the

implications of the failure mechanism on the specimen response. It was assumed that strain-

softening is due to scaling the applied force by the original cross-sectional area rather than the

actual cross-sectional area - named the “resistant area” Ares (Fig. 4b) - as it happens with steel

subjected to traction (Fig. 4a). Since the resistant area decrement is an internal not observable

mechanism in concrete and in brittle rocks, the function Ares = Ares (ε) is not directly measurable

and has to be identified by a model. In Fig. 4b, qualitative effective laws are provided for three

different assumptions on Ares.

We now illustrate the details of the model by showing its original application on concrete

specimens where the effects are magnified. The load-displacement curves and the classic average

stress versus average strain relationships for the experimental acquisitions on cylinders with variable

H/R ratio are provided in Figs. 5 and 6.
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In accordance with the identifying model of the effective law [1], we evaluate an effective stress:

σeff =
N

Ares

= σ
An

Ares

. (4)

where N is the applied load, σ is the average stress, and the resistant area Ares is related to the

nominal area An in accordance with the Fracture Mechanics with Damage:

Ares = An (1 − D) . (5)

where the damage parameter D is a scalar comprised between 0 (test begin) and 1 (crushing).

However, while in the Fracture Mechanics with Damage D is considered as a material property,

here D is considered as a structural property, due to the propagation of cracks in the specimen

and it is experimentally evaluated calculating the quantity:

D = Wd/Wd,t (6)

where Wd is the dissipated energy at the current point and Wd,t is the total dissipated energy.

To evaluate Wd at a given point, we unload the specimen and evaluate the area below the load-

displacement curve as shown in Fig. 7.

Since it can be experimentally appreciated that damage does not evolve during the unloading-

reloading cycles, the resistant area does not change and the unloading-reloading slope Es charac-

terizes the instantaneous stiffness of the material as a function of the average strain. We can thus

define an effective strain

εeff = σeff /Es (7)

as shown in Fig. 8 along with the identified σeff − εeff relationships.

The average curve in Fig. 8 is actually a monotone non-decreasing one, as it was expected from

the preventive theoretical analysis (Fig. 4b). This is a notable result, since the monotonicity of

the effective law has not been assumed a-priori. Moreover, since the dispersion range in Fig. 8 is

very narrow, it can be stated that the σeff − εeff curves are size-effect insensitive. It can also be

shown [12] that the identified curve is not sensitive to changes of failure mechanism.
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Numerical simulations of the structural behavior have shown how the monotone effective law

can provide results in good agreement with the experimental data [1], even in triaxial compressive

loading [11].

3.2 Application to Calcare Massiccio

We now apply the identifying model of the effective law to the cyclic test performed on specimen

C1 whose σ − ε plot is shown in Fig. 2.

The interpolated slope of the unloading-reloading cycles (see Fig. 9) is shown to be substantially

constant (within a few %) with the increasing average strain. It can thus be concluded that the

instantaneous stiffness of the material does not substantially change during loading. That is, we

can consider with good approximation that Calcare Massiccio behaves as a linear elastic material

up to failure.

The evolution of the resistant area Ares as a function of the average strain, evaluated by means

of Eqs. (6) and (5) and by the knowledge of the unloading-reloading law, turned out to be very

weak (see Fig. 10). This means that in Calcare Massiccio the gap between structural and material

behavior is very little. We can thus expect an effective law very close to the average law as shown

in Fig. 11, with σeff given by Eq. (4).

The tangent effective Young modulus for the cyclic test on the specimen C1 turned out to

assume the value Eeff = 68 GPa. Since the resistant area is very close to the nominal area

until crushing, the assumption of no-damage and uniform stress on the middle cross-section is

well accurate in Calcare Massiccio. This results in a reliable evaluation of the material stiffness

provided by strain-gauge acquisitions on the middle cross-section.

4 Discussion

The measured static Young modulus of Calcare Massiccio, E = (77 ± 1.5) GPa (Eeff = 68

GPa) is lower than the dynamic value, E = (81 ± 5) GPa, as it is generally espected, but the

two measurements turn out to be substantially consistent within experimental errors and sample

variability.

To investigate the accuracy of the experimental methods we used the same techniques and

apparatuses on a well known material, PMMA5, for which a wealth of measurements exists and

5We used cast PMMA (Plexiglas) produced by Röhm and Haas Italia Srl
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which, being a rheologic material, exhibits a large variation between static and dynamic moduli.

The stress-strain diagrams are reported in Fig. 3. The static measurements gave a value of

E = (3.6 ± 0.1) GPa and a Poisson ratio ν = 0.38. The dynamic measurements gave a constant

value of E = (6.0 ± 0.2) GPa at both 75 kHz and 1 Mhz with a Poisson ratio ν = 0.33. While

the dynamic values are very stable and highly consistent with independent measurements, with E

ranging between 6.0 and 6.3 GPa and ν = 0.33 [13, 14, 15], it is difficult to state the accuracy of the

measurements at lower frequency. The Young modulus of PMMA appears in many reference tables

which routinely do not specify the measurement technique. The most common value is comprised

between 3 and 3.2 GPa [13, 16, 17], but the reported range is between 2.7 GPa [18, 19] and 3.7

GPa [20]. As an exception, Koppelmann [21] provided a complete curve of the Young modulus of

PMMA for frequencies ranging from 10−4 to 103 Hz, suggesting a static limit E = 3 GPa, then a

progressive rise with frequency up to 5 GPa at 1 kHz where the trend is still positive. The Poisson

ratio is fairly constant at ν = 0.33 except for a drop to 0.30 near the maximum slope of the Young

modulus.

It is typical to find an unresolvable 10 to 20% bias between different measurement techniques.

While the large frequency dependence of the Young modulus of PMMA is in any case well apparent,

this is not the case for non rheologic materials like Calcare Massiccio. In this case there is no

evidence of a frequency dependence on the elastic moduli and the use of the dynamic method

appears to provide both the easiest and the most accurate values, especially for the Poisson ratio.

For the purpose of geophysical modeling we can thus retain a unique value for the Young

modulus of Calcare Massiccio E = 75 GPa, and consider a typical error bar of ±10% which

comprises our dynamic, static and effective estimates performed at room temperature over nine

decades in frequency. For the Poisson ratio we should retain the dynamic estimate ν = 0.28±0.02.

The good accordance between the static-dynamic and effective analysis gives generality and

further validation to the identification model of the effective law, which has been settled on con-

crete. When identifying the constitutive law, this model allows us to take into account the resistant

area decrement due to damage. This results in average and effective stress-strain laws no more

homothetic, in general. In particular, the effective law is always monotone, even if the experimen-

tal load-displacement diagram is softening. For this model, the gap between average and effective

behavior is expected to vanish in linear elastic materials, since damage is negligible in these ma-
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terials. To verify this statement, the identifying model has been tested on Calcare Massiccio, a

material traditionally assumed as linear elastic. A poor developing of damage has been actually

found in Calcare Massiccio, following in effective laws close to the average ones. In such a type of

material, there is a negligible decrement of resistant area and the difference between effective and

dynamic elastic moduli is very small.

Finally, from Figs. 7 and 10, it may be concluded that the failure mechanism is very different in

concrete-like and rock-like materials. Actually, the identifying model of the effective law returns a

sensitivity of the damage/resistant area to the load step which is relevant in concrete-like materials

(Fig. 7) and negligible in rock-like materials (Fig. 10). This results in a failure mechanism with

propagation of macro-cracks from the very beginning of the compression test forth, for concrete-

like materials, and a failure mechanism without significant damage evolution up to crushing, for

rock-like materials.
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Table captions

Table 1

Chemical composition of Calcare Massiccio obtained through XRF analysis at the Dipartimento

di Scienza della Terra of Bologna, Italy. LOI stands for Loss On Ignition.

Table 2

Static elastic moduli for the monotonic tests on the three specimens C2, C5 and C6, and the

cyclic test on specimen C1.

Table 3

Measured P and S waves velocities and dynamic moduli evaluated through (1) and (2) when

vS is available, or otherwise through (3) with ν assumed to be the same as the one measured at

1 MHz. The P wave velocity 1 MHz is the average value between pulse-echo and transmission

measurements, which differed only by 0.6%.



CaO 50,55%
LOI 43,69%
MgO 5,00%
Fe2O3 0,30%
Al2O3 0,20%
Sr 170 ppm
Trace Elements 0.24%

Table 1: Chemical composition of Calcare Massiccio obtained through XRF analysis at the Dipar-
timento di Scienza della Terra of Bologna, Italy. LOI stands for Loss On Ignition.

S El Et ν
mm2 GPa GPa

C2 107.0 78.4 -180 0.43
C5 120.7 77.0 -179 0.43
C6 109.1 75.3 -173 0.44

mean 112 77 -178 0.43
std 7 1.5 4 0.01
C1 87.5 78.8 -260 0.30

Table 2: Static elastic moduli for the monotonic tests on the three specimens C2, C5 and C6, and
the cyclic test on specimen C1.

f (kHz) vP (m/s) vS (m/s) E (GPa) ν
1000 6195± 150 3427± 90 81.4± 4.5 0.28± 0.02
75 6169± 260 - 80.7± 7 -

Table 3: Measured P and S waves velocities and dynamic moduli evaluated through (1) and (2)
when vS is available, or otherwise through (3) with ν assumed to be the same as the one measured
at 1 MHz. The P wave velocity 1 MHz is the average value between pulse-echo and transmission
measurements, which differed only by 0.6%.



Figure captions

Figure 1

Stress-strain diagrams for the monotonic test on specimens C2, C5 and C6. The straight line
represents an estimate of the tangent modulus in the low strain limit.

Figure 2

Stress-strain diagram for the cyclic test on specimen C1. The straight line represents and a
linear fit in the whole cycled region.

Figure 3

Stress-strain diagram for the monotonic (dashed) and cyclic (solid) test on PMMA specimens
C2 and C1. The straight lines represent estimates of the tangent moduli in the low strain limit.

Figure 4

Stress identification from load data: influence of the middle cross-section evaluation for steel
(a) and concrete (b).

Figure 5

Size effect for the load-displacement diagrams: concrete specimens.

Figure 6

Size effect for the average stress versus average strain diagrams: concrete specimens.

Figure 7

Evolution of resistant area and damage law for concrete specimens with variable H/R ratio.
The inlet shows the evaluation of the dissipated energy Wd.

Figure 8

σeff − εeff dispersion range for variable H/R ratio and average curve: concrete specimens.
The inlet shows the identification of the effective strain εeff : the generic point σeff − εeff results
from the intersection of the two lines σ = σeff and σ = Esε.

Figure 9

Interpolating law of unloading-reloading slope versus average strain for Calcare Massiccio.

Figure 10

Percentage resistant area versus average strain for Calcare Massiccio.

Figure 11

Comparison between the average and effective law for Calcare Massiccio.
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Figure 1: Stress-strain diagrams for the monotonic test on specimens C2, C5 and C6. The straight
line represents an estimate of the tangent modulus in the low strain limit.
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Figure 2: Stress-strain diagram for the cyclic test on specimen C1. The straight line represents
and a linear fit in the whole cycled region.
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Figure 3: Stress-strain diagram for the monotonic (dashed) and cyclic (solid) test on PMMA
specimens C2 and C1. The straight lines represent estimates of the tangent moduli in the low
strain limit.
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Figure 4: Stress identification from load data: influence of the middle cross-section evaluation for
steel (a) and concrete (b).
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Figure 5: Size effect for the load-displacement diagrams: concrete specimens.
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Figure 6: Size effect for the average stress versus average strain diagrams: concrete specimens.



�
���
���
���
���
	��

��
���
���
��
�����

� ����������������
�����������������������������������������������
������������������������������������

�
��� �
��� �
��� �
��� �
��� 	
��� 

��� �
��� �
��� 
�

����� �"!

�#���$�&%�#���$�('
�#���$�()

����� �"* ����� �"+

,

∆ -

./

H = (3  8)R.. 

2R

_

0214365&798�:
µε ;

<�=>?
@ <�A
B C
D

E F
GFH
IJFK
F
GIL
IK
M

Figure 7: Evolution of resistant area and damage law for concrete specimens with variable H/R
ratio. The inlet shows the evaluation of the dissipated energy Wd.
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Figure 8: σeff−εeff dispersion range for variable H/R ratio and average curve: concrete specimens.
The inlet shows the identification of the effective strain εeff : the generic point σeff − εeff results
from the intersection of the two lines σ = σeff and σ = Esε.
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Figure 9: Interpolating law of unloading-reloading slope versus average strain for Calcare Massiccio.
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Figure 10: Percentage resistant area versus average strain for Calcare Massiccio.
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Figure 11: Comparison between the average and effective law for Calcare Massiccio.
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