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Abstract 

A new procedure is proposed for identifying mono-axial stress-strain relationship and Poisson 

ratio in compressed plain concrete. By considering the specimen as a structure, the procedure 

identifies effective properties from experimental data. This way of proceeding involves a 

modification of traditionally identified mono-axial stress-strain relationship and Poisson ratio. 

Results are presented for cylinders with varying slenderness. 
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1. Introduction 

In order to derive a constitutive law in uniaxial compression from experimental data, it 

is common practice to define the average stress σ  and the average strain ε  as shown 

in Fig. 1. The σ - ε  relationship in Fig. 1 is known as uniaxial constitutive law for 

monotone strain processes. The term “constitutive” is associated with the σ - ε  

relationship since this relationship is considered as representative of the mechanic 

behaviour of the material. However, one can make the following remarks concerning 

the choice of this term: 

1. The σ - ε  law in Fig. 1 is size-effect sensitive, while a constitutive law should not 

exhibit a size effect. 

2. The identification procedure in Fig. 1 consists of a mere change of scale. Thus, 

experimental and identified curves are homothetic (Fig. 1). In particular, they both 

exhibit a softening behaviour. Nevertheless, it is not possible to associate a physical 

meaning with the softening behaviour of a material response, as the concept of 
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instability loses its sense in the infinitesimal neighbourhood of a point [3]. Besides, 

from the beginning of the 20th century forth, strain-softening has been widely 

regarded as inadmissible by several authors [4]. 

These inconsistencies come from the impossibility of performing mechanical tests on 

the material directly: the object in testing is never the material, but a specimen, that is to 

say, a structure interacting with the test-machine (Fig. 1, [1]). Thus, experimental results 

univocally characterise the behaviour of the specimen-test machine system, while they 

are not at all representative of the constitutive behaviour of the material. In particular, 

by associating the N-ΔH load-displacement diagram in Fig. 1 with the result of a 

compressive test on aggregative material, the softening branch has a meaning that is 

only linked to the structural instability. This branch cannot provide information on the 

material constitutive behaviour, but through an identifying model. That is to say, to 

identify constitutive laws starting from experimental results it is necessary to evaluate 

all factors influencing a test result. Indeed, since the specimen is a structure, 

experimental results (R) depend not only on constitutive properties (C), but also on 

structural mechanics (S), interactions between test-machine and specimen (I), and test-

machine metrological characteristics (M): 

MISCR +++= . (1) 

On the base of partially analogous considerations, Rosati et. al. [2] have recently 

proposed a complete response for concrete loaded in tension. 

It is then necessary to define an identifying procedure from experimental data to 

material behaviour (inverse problem), which is not affected by the remarks concerning 

the approach in Fig. 1. In the present paper, a proposal for the identification of the 

effective stress-effective strain relationship of concrete in monotone uniaxial 

compression is presented. 
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2. Identification approach of σ-ε effective behaviour in mono-axial 

compression 

2.1. Identification of the effective stress 

Name CK , SK , IK , and MK  the weighed contributions assumed by C, S, I, and M, 

respectively, in the definition of R (Eq. (1)): 

RKC C= ,     RKS S= ,     RKI I= ,     RKM M= . (2) 

With this position, it follows that 1=+++ MISC KKKK . 

All the contributions but the constitutive behaviour can be grouped in one factor: 

MIS KKKK ++= . (3) 

From the identifying procedure in Fig. 1 it follows that: 

RC ≡ . (4) 

With the position in Eq. (3), the Eq.(4) is replaced by the relationship: 

( )RKC −= 1 . (5) 

The equation (5) allows evaluation of the constitutive properties, taking into account the 

behaviour of the specimen-test machine system, which is represented by the parameter 

K. This approach is formally more correct that the approach in Eq. (4). Nevertheless, it 

is not of immediate use for identifying constitutive properties, since ( )RKK CC = , 

( )RKK SS = , ( )RKK II = , and ( )RKK MM =  are, generally speaking, load-step 

functions. That is to say, 

( )RKK =  (6) 

is a load-step function, and not a constant of the performing test. 

In conclusion, it is not possible to establish a homothetic correspondence between the 

experimental load-displacement relationship and the uniaxial constitutive stress-strain 

relationship. Moreover, since Eq. (6) is not of objective determination, K can only be 

estimated, with regard to the material scale. This involves the identification of an 

effective response, and not of a constitutive response in its rigorous meaning. 
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The main consequence of Eqs. (5) and (6) is the loss of the traditional identity between 

the experimental and the effective curve shape. In other words, the effective curve may 

not exhibit the typical softening behaviour of the experimental curve. Since it is 

impossible to associate a physical meaning with the strain-softening behaviour of a 

material response, it can be asserted that the identified effective laws must be monotone 

nondecreasing for any material. 

An analysis of the reciprocal ratios between CK , SK , IK , and MK  for compressed 

concrete cylinders [3] showed that it is possible to assume SKK ≅ . Thus, the large 

structural scheme variation following from the propagation of dominant bi-cone shaped 

cracks is preponderant in comparison to the other addends in Eq. (3). To identify the 

scale factor of the σ  axis with respect to the N axis (Fig. 1), it is fundamental to 

introduce a parameter whose dimensions are those of an area and whose incremental 

law is linked to the structural scheme variation. In the following, this parameter will be 

termed the resistant area resA . In the assumption that SKK ≅ , any specimen can be 

regarded as composed by a resistant structure (Fig. 2), in which crack propagation never 

occurred, and a volume of incoherent material. 

In this study, it was proposed to estimate the resistant area resA  in accordance with the 

Fracture Mechanics with Damage: 

( )DAA nres −= 1 , (7) 

where D is a scalar. 

In accordance with Eq. (7), the effective stress has been defined as the average stress 

acting on the area resA : 

res
eff A

N
=σ . (8) 

Alternatively, the effective stress can be expressed as: 

res

n
eff A

A
σσ = . (9) 

The analogy with the manner of operation of the Fracture Mechanics with Damage is 

limited to Eq. (7). Indeed, in the Fracture Mechanics with Damage, D has an analytic 
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formulation and is considered as uniformly distributed on nA . In this study, ( )RDD =  

is experimentally evaluated and is considered as localised in the volume of incoherent 

material. 

2.1.1. Algebraic considerations about the formulation of the effective stress 

In this paragraph, an interesting information about the sign of the effective stress 

derivative in the effσ - ε  plane is provided. In the following, it will be shown how this 

information directly rises from the formulation of the effective stress in Eq. (8), in 

which resA  is computed in accordance with Eq. (7). Put Eq. (8) in the form: 

( ) ( )
( )vA
vNv

res
eff =σ , (10) 

where the dependence of effσ , resA , N e D on the displacement v is explicit. Now, find 

the derivative of Eq. (10) with respect to the variable ε : 

2
res

resres
eff

eff

A
ANANH

d
dv

d
d ′−′

=′=
ε

σ
ε

σ
. (11) 

The superscript indicates derivation with respect to the variable v, and H is the gage 

length of ε : 

εHv = . (12) 

For the conventions in Fig. 1, it follows that: 

( ) maxˆ NvN
vv

=
=

, (13) 

where v̂  is the value of impressed displacement corresponding to the maximal load. As 

to the discussion of the sign of Eq. (11), it can be stated that: 

• N is a monotone nondecreasing function until the peak ( 0≥′N , vv ˆ0 ≤≤ ), and a 

monotone strictly nonincreasing function beyond the peak ( 0<′N , vv ˆ> ); 

• resA  is a monotone nonincreasing function on all the domain ( 0≤′resA , v∀ ), and it 

can assume a zero tangent only in a neighbourhood of the origin, corresponding to 

the linear elastic state of the material. 
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For Eq. (7), the assumption of monotonicity for resA  involves a condition of 

monotonicity for the damage law. 

The experimental results agree with the condition of non zero tangent of resA  and D for 

vv ˆ= , since the crack propagation rate near vv ˆ=  is always very fast: 

0ˆ ≠′ =vvresA ,          0ˆ ≠′ =vvD . (14) 

From the above discussion, it follows immediately that the sign of εσ dd eff  is positive 

for vv ˆ0 ≤≤ : 

0>
ε

σ
d

d eff           vv ˆ0 ≤≤ . (15) 

In particular, for vv ˆ=  the Eq. (11) assumes the value of: 

02
ˆ

>
′

−=
= res

res

vv

eff

A
A

NH
d

d
ε

σ
, (16) 

in which the strict inequality comes from Eq. (14). 

From Eq. (15), the first result of fundamental importance follows: a point with strictly 

positive tangent in the effσ - ε  curve corresponds to the point with zero tangent in the 

N-v curve. This is a notable result, since it has been obtained without having introduced 

any other assumptions on the shape of the damage law except the physically justifiable 

condition of non zero tangent in correspondence of the maximal load. It can easily be 

demonstrated how the same result for the sign of the tangent can be transposed to the 

effσ - effε  curve, in the point corresponding to the vv ˆ=  point of the N-v curve. 

As regards the sign of Eq. (11) for vv ˆ> , this depends on the value of ρ, the ratio 

between the two terms in the numerator of Eq. (11): 

res

res

AN
AN
′

′
=ρ . (17) 

The result is: 

0≥
ε

σ
d

d eff           vv ˆ>∀ , 10 ≤≤ ρ  (18′) 
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0<
ε

σ

d

d eff           vv ˆ>∀ , 1>ρ . (18″) 

In alternative to Eqs. (18), one can study the sign for vv ˆ>  of the derivative of q, 

defined as follows: 

( )

max

7
max

N
N

A
A

q
n

res

eff

==
σ
σ , (19) 

in which the function q has been expressed as the ratio between the normalised resistant 

area and the normalised load. It follows that: 

2max2max N
ANAN

q resres

eff

eff ′−′
−=

′
−=′ σ

σ
σ

σ . (20) 

From Eq. (20) it can be observed that the sign of q′  too is determined by the ratio ρ. 

The result is: 

0>′q           vv ˆ>∀ , 1>ρ ; (21′) 

0≤′q           vv ˆ>∀ , 10 ≤≤ ρ . (21″) 

On the other hand, the sign of q′  follows directly from Eqs. (18) and the first equality 

in Eq. (20), which states that the signs of q′  and effσ ′  are unconformable v∀ . 

In conclusion, the sign of εσ dd eff  is surely positive for vv ˆ0 ≤≤ , whereas it is only 

known when the damage law is known for vv ˆ> . Also this result can easily be 

transposed to the sign of the derivative of the effσ - effε  curve. 

2.2. Identification of the effective strain 

As regards the scale factor of the ε  axis with respect to the v axis (Fig. 1), the effective 

strain effε  has been identified considering that only the conservative forces act in a 

generic unloading-reloading cycle. In other words, these cycles should be characterised 

by constant values of resistant area. For this assumption, the instantaneous secant 

stiffness of the effσ - effε  law, αtan=sE  (Fig. 3), is taken equal to the average slope of 
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the unloading-reloading cycle at the current point. Thus, the generic point effσ - effε  

results from the intersection of the two lines effσσ =  and εσ sE= . 

Fig. 3 shows the identification of the effective strain effε , starting from the value of 

effective stress effσ  (Eqs. 8 and 7) and the knowledge of the damage law D. 

3. Results for the concrete in monotone uniaxial compression 

To operate the transformation in Fig. 3 from the σ - ε  diagram to the effσ - effε  

diagram, the damage law D and the unloading law must be known. In the following, a 

proposal to experimentally evaluate these laws is presented. 

The results shown in the following sections belong to an experimental programme [3] 

on cylindrical concrete specimens. In this programme, six geometries of specimens have 

been taken into account, with the height-radius ratio variable between three and eight. 

Three specimens have been made for each of the six geometries. All the eighteen 

specimens have been tested in monotone uniaxial load, in the same thermo-hygrometric 

and curing conditions. 

3.1. Unloading law 

The Fig. 4 shows how the unloading law is sensibly independent on the slenderness of 

the specimens. This result supports the assumption for which all the parameters 

characterising the unloading-reloading cycles, included their average slope, are linked 

to proprieties of the material and do not depend on the structural mechanics. This 

happens since the resistant area does not change in the unloading-reloading cycles. 

3.2. Experimental damage law 

To evaluate ( )RDD = , two experimental damage laws were employed. The first 

damage law, 1D  [5], relates the damage to the percentage variation of the microseismic 

signal velocity V at the current point (set-up of the microseismic test in Fig. 5.a): 

01 1 VVD −= , (22) 

where 0V  is the initial microseismic signal velocity. 
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The second damage law, 2D  [6], relates the damage to the dissipated energy dW  at the 

current point (Fig. 5.b): 

tdd WWD ,2 = , (23) 

where tdW ,  is the total dissipated energy. The evaluation of dW  has been done in 

accordance with the experimental unloading law. 

1D  and 2D  turned out to be very close to each other [3], until the acceptability 

threshold of the added noise. This threshold corresponds to the value of deformation 

beyond which the noise of the crack propagation disturbs the microseismic survey so 

much that the variations of the microseismic signal cannot be appreciated any longer. 

For Eq. (7), the 1D  and 2D  experimental damage laws can be seen in Fig. 6 as the 

one’s complement of the corresponding percentage resistant area laws. 

To identify the effective properties, only the 2D  damage law has been used in the 

following, since this law is not affected by limitations in the survey field. 

The assumption of only conservative forces acting on the unloading-reloading cycles 

allows evaluation of the specimen defects at the natural state, through the amount of 

initial damage 0D  [6]. Indeed, for the mentioned assumption, 0D  comes from the ratio 

between the slope of the stabilising cycle and the tangent to the origin of the N-v 

diagram (Fig. 7): 

( )
( ) s

c

effE
ED

φ
φ

ε
ε

tan
tan

11
0

0

0

0
1

−≅−= . (24) 

It must be incidentally recalled that a stabilising cycle is an unloading-reloading cycle 

that is effectuated for a preloading equal to about the 10% of the maximal presumed 

load. The stabilising cycle is done in order to limit the influence of the specimen-test 

machine interaction and test-machine metrological properties on the experimental 

result. The moderate value of the preloading and the mechanical meaning of the 

unloading-reloading slopes allow one to associate the difference between the loading 

and unloading slopes with a damage that is load history independent. This damage 

characterises the specimen at the natural state. 

In accordance with Eq. (24), Eq. (7) has been modified as follows: 
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( )eqnres DAA −= 1 . (25) 

eqD  is the equivalent damage, comprehensive both of the initial damage 0D  and the 

damage 2D  due to the monotone loading. eqD  can be expressed as: 

( )( ) 202020 111 DDDDDDDeq −+=−−−= . (26) 

The nominal area deprived of the defects at the natural state, termed the reduced 

nominal area nA′ , results from: 

( )01 DAA nn −=′ . (27) 

Damage laws were experimentally derived for variable specimen slenderness. The Fig. 

8 shows the 2D  damage laws obtained for RH  ratios varying from 3 and 8. As can be 

seen in Fig. 8, damage laws are size-effect sensitive. That is, the highest is the RH  

ratio, the highest is D for every load-step. 

3.3. Sign of the effective stress derivative 

As previously stated, the experimental damage law can be seen in Fig. 9 as the one’s 

complement of the percentage resistant area law. The derivative of the experimental 

damage law in Fig. 9, D′ , turned out to be very close to assume a maximum for vv ˆ= . 

This result represents the experimental validation of the assumption in Eq. (14), and, as 

already stated, corresponds to a fast crack propagation situation. 

The discussion on D′  is independent on the single test, and the behaviour in Fig. 9 for 

vv ˆ=  can be generalised. Indeed, the adopted damage law (Eq. (23)) has a shape that is 

widely determined by the integral of the N-v curve. Hence, since the N-v curve exhibits 

a maximum for vv ˆ= , the damage law assumes its maximum derivative in the 

neighbourhood of v̂ . 

As regards the sign of the effective stress derivative after the peak, the experimental 

( )vq  function turned out to be a positive-valued, monotone strictly nonincreasing 

function (Fig. 10): 

( ) 0<′ vq           v∀ . (28) 
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This implies that the resistant area decreasing rate was faster than the load decreasing 

rate. This circumstance and the negative sign between q′  and effσ ′  (Eq. (20)) ensure the 

effective stress derivative to be positive also for vv ˆ> . 

In conclusion, for the performed experimental programme and the damage law in Eq. 

(23), the effective stress derivative always assumes a finite positive value: 

0>
ε

σ
d

d eff           v∀ . (29) 

3.4. Effective curve 

The N-v diagrams for the six specimens with varying slenderness of the experimental 

programme [3] are shown in Fig. 11. In this Figure, the size-effect in the N-v plane 

involves both a decrement of the tangent to the origin with the increasing of the RH −  

ratio, and a decrement of the maximum load with the increasing of the RH −  ratio. 

The effσ - effε  relationships obtained for the six tested geometries fall within the grey 

region in Fig. 12 (dispersion range). As previously stated, a strictly positive derivative 

for the effective properties curves in the effσ - effε  plane directly follows from the 

independence of the behaviour in Fig. 9 on the single test. Moreover, it can be stated 

that the effective properties curves are size-effect insensitive, since the dispersion range 

is very little. 

The average curve shape in the effσ - effε  plane is representative of the meso-scale 

material behaviour. 

4. Identification of the Poisson ratio 

With reference to the traditional approach, said RRr Δ=ε  the radial strain and 

HHl Δ=ε  the longitudinal strain for a uni-axially compressed solid, the Poisson ratio 

is defined as lr εεν −= . If lε  is of immediate determination, things are different for 

rε , since it is not easy to measure a radial strain. A way to solve this problem is to 

reduce the radial measure to a circumferential measure: 
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crf
crf

R
R

R
R

r
Δ

=
Δ

=
Δ

=
π

πε
2

2 . (30) 

Operatively, radial strain can be acquired by means of a circumferential strain gauge [1, 

[3], maintained in the right position using a chain (Fig. 13). Nevertheless, strain 

measurements acquired on cylindrical specimen surface cannot be employed to evaluate 

the Poisson ratio, because they are affected by crack openings. Even this time, the 

model traditionally assumed to identify a constitutive property is not accurate enough to 

interpret the physical problem. The resultant lr εε  ratio in function of lε  is a 

monotone nondecreasing relationship [7] (Fig. 13). 

To avoid the acquisition of crack openings, fibre optic sensors (FOSs) have been 

utilised [3] to acquire radial strains internally to the resistant structure (Fig. 13). The 

lr εε  ratio for this new acquisition is almost constant with lε  (Fig. 13). 

Since in this study it was assumed that macro-cracks do not occur in the resistant 

structure, the new constant behaviour of lr εε  could be considered more representative 

of the Poisson ratio ν  than the traditional increasing behaviour of lr εε  is. To 

evaluate the actual Poisson ratio, the actual stress state in the resistant structure must be 

taken into account, since this state is tri-axial in any case. 

Finally, the new volumetric curve integrally belongs to the negative field, while the 

traditional volumetric curve also develops in the positive filed [7] (Fig. 14). Thus, on 

the contrary of what traditionally asserted [7], it is possible to assume that the concrete 

never exhibits a dilatant behaviour. 

5. Conclusions 

A concrete specimen under uniaxial monotone compression in displacement-control is 

characterised by a load (N)-displacement (v) diagram with softening. During the 

loading, the specimen exhibits a crack propagation pattern that depends on the structural 

mechanics and the interaction with the test-machine. The N-v diagram itself is affected 

by the structural mechanics and the interaction between the specimen and the test-

machine, since the crack propagation modifies the resistant structure. 
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The aim of this study was to identify the mechanical properties of the material, starting 

from the experimental behaviour of the whole specimen-test machine system (N-v 

diagrams). These identified mechanical properties have been termed the “effective 

properties”. 

Considering the specimen as a structure interacting with the test-machine, it was 

demonstrated that the effσ - effε  curve of damaging materials exhibits a strictly positive 

derivative at the point corresponding to the peak of the σ - ε  curve. This result is 

independent on the adopted damage law. 

An experimental programme on cylindrical concrete specimens in uniaxial compression 

has been performed. A procedure to experimentally evaluate the damage law has been 

proposed. The adopted damage law led to monotone strictly nondecreasing effσ - effε  

curves for all concrete specimens. Moreover, this curve turns out to be size-effect 

insensitive. The proposed approach allows identification of a effσ - effε  relationship for 

the description of the meso-scale material behaviour. This relationship, together with 

adequate failure criteria, leads to structural analysis [3]. 

By means of strain acquisitions internally to the resistant structure, a very close Poisson 

ratio was estimated to be constant with the longitudinal strain [1]. From the constant 

value of the Poisson ratio, it follows that concrete never exhibits a dilatant behaviour 

[1]. What we know as dilatant behaviour of the concrete [7] comes from an erroneous 

acquisition of radial strain, which is affected by crack openings. 

The qualitative evaluations of the Poisson ratio and of the specific variation of volume, 

from strain measurements acquired inside the resistant structure, can provide useful 

information for the description of the effective response in tri-axial state. 
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Figure captions 

 
Fig. 1. Traditional identification of mono-axial constitutive law by experimental tests. 

Fig. 2. Resistant structure at the end of the test. 

Fig. 3. Identification of effε  starting from the known value of effσ . 

Fig. 4. Interpolating law of the unloading-reloading cycles average slope variation for variable 

slenderness. 

Fig. 5. a) Test set-up for the acquisition of 1D ; b) Evaluation of dW  for the acquisition of 2D . 

Fig. 6. Comparison between the energetic and microseismic laws. 

Fig. 7. Parameters used to evaluate initial damage 0D . 

Fig. 8. Evolution of resistant area and 2D  damage law for variable slenderness. 

Fig. 9. Comparison between the load and resistant area normalised laws. 

Fig. 10. Scale factor between the percentage resistant area and normalised load laws. 

Fig. 11. Size effect for the load-displacement diagrams. 

Fig. 12. effeff εσ  dispersion range for variable slenderness and average curve. 

Fig. 13. Traditional and identified lr εε  ratios. 

Fig. 14. Traditional and identified volumetric curves. 
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Fig. 8 – Elena Ferretti 
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Fig. 9 – Elena Ferretti 
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Fig. 10 – Elena Ferretti 
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Fig. 11 – Elena Ferretti 
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Fig. 12 – Elena Ferretti 
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Fig. 13 – Elena Ferretti 
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Fig. 14 – Elena Ferretti 
 
 


