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ABSTRACT 
 

In this study, the problem of finding the limiting load in infinite plates with internal cracks is 
extended to the non-linear field. In particular, results concerning concrete plates in bi-axial 
loading are shown. The analysis is performed in discrete form, by means of the Cell Method. 
The discrete analysis allows us to identify the crack initiation without using the stress intensity 
factors. This simplifies the computation in cracked solids of finite dimensions. An example of 
computation in finite solids, the skew-symmetric four-point bending beam, is provided. 
 
INTRODUCTION 
 

For finding the minimum load required to propagate a crack (limiting load), the variational 
principle of the most common crack theories has been used over the past three decades (Parton 
and Morozov 1978). Criteria for the initiation of crack propagation can be obtained on the basis 
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of both energy and force considerations. Historically, at first an energy fracture criterion was 
proposed by A. A. Griffith in 1920 and G. R. Irwin formulated a force criterion in 1957, while 
the same time demonstrating the equivalence of the two criteria. The Irwin force criterion for 
crack extension and the equivalent Griffith energy criterion completely solve the question of the 
limiting equilibrium state of a cracked continuous elastic body. Nevertheless, there exists a 
number of other formulations also establishing the limiting equilibrium state of a cracked body. 
Among these, the best known models are those of Leonov and Panasyuk (1959), Dugdale 
(1960), Wells (1961), Novozhilov (1969), and McClintock (1958). 
Usually, the variational problem of finding the limiting load is reduced to that of finding 
extreme points of a function of several variables (Parton and Morozov 1978). 
In the present paper, the variational approach has been abandoned in favour of a discrete 
formulation of the crack propagation problem. The numerical calculation is then performed by a 
new numerical method for solving field equations: the Cell Method (CM) (Tonti in press). 
The numerical code for crack initiation analysis with the CM has been developed by E. Ferretti 
(Ferretti in press). In this study, the code has 
been extended to provide results in the case of a 
concrete plate (Fig. 1) tensioned at infinity by a 

load of intensity 0xp kp=  parallel to the x-axis, 

and 0yp p=  parallel to the y-axis. The plate has 

an initial straight crack of length 02l  oriented at 

an angle 0α  to the x-axis. The minimum load 

required to propagate the crack from the ends of 

the cut is provided for various values of k, 0α . 

 
CRACK EXTESION CRITERION 
 

The crack limiting load can be determined using a variety of criteria: 
• the maximal normal stress criterion; 
• the maximal strain criterion; 
• the minimum strain energy density fracture criterion; 
• the maximal strain energy release rate criterion; 
• the damage law criteria. 
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Fig. 1. Load and geometrical set-up of 
the cracked infinite plate. 
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In the present paper, the crack extension condition is 
studied in the Mohr-Coulomb plane. The limiting load is 
computed as the load satisfying the condition of tangency 
between the Mohr’s circle and the Leon limit surface 

(Fig. 2). Said c the cohesion, cf  the compressive strength, 

tbf  the tensile strength, the Leon criterion is expressed as: 

 

 
To identify the Mohr’s circle for the tip neighbourhood, 
an hexagonal element was inserted at the tip (Ferretti in 
press, Fig. 3), as to establish a correspondence between 
the tip stress field and the attitudes. The propagation 
direction is then derived as the direction of the line 
joining the tangent point to the Mohr’s pole (Fig. 2). 

 
NUMERICAL RESULTS 
 

Numerical results concerning the infinite concrete plate loaded as shown in Fig. 1 are here 
presented. For symbols and conventions, refer to the same Fig. 1. The concrete constitutive law 

adopted in this study is monotonically nondecreasing, 
in accordance with the identification procedure 
provided in Ferretti 2001 (Fig. 4). 

The yp  analysis for 0k =  and 0 45α = ° , plotted in 

greyscale on the deformed configuration of a finite 
area around the crack, is shown in Fig. 5.a. In this 
figure, the darker colour corresponds to the maximal 
tensile stress, while the lighter colour corresponds to 

0yp = . In Fig. 5.b, the yp  analysis is performed in 

3D, with the level lines plotted in the plane 0yp = . The boxed area in the plane 0yp =  is the 

area of the figure Fig. 5.a. As all the level lines are internal to the boxed area, it can be assumed 
with good approximation that this area represents the stress extinction zone. 
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Fig. 4. Adopted constitutive law 
for concrete in mono-axial load. 
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Fig. 2. Leon limit surface in 
the n nσ τ−  plane. 
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Fig. 3. Hexagonal element for 
analysis in the n nσ τ−  plane. 
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Fig. 5. a) Greyscale plane yp  analysis; b) 3D yp  analysis and lines of equal yp . 

 
The normalised limiting load in the direction of the y-axis, 

0 ,
maxy yk

p p
α

, is plotted in Fig. 6.a for 

each value of the angle 0α  ( 0 090β α= − ) and for the factor k equal, respectively, to 0, 1 4 , 1 2 , 

3 4  and 1. This figure exhibits a yp  limiting load increasing with 0α  in the field 0 1k≤ < , 

stating that 0 0α =  is the critical crack orientation angle for all the biaxial load conditions with 

the x-component lower than the y-component. The constant behaviour of the line obtained for 
1k =  is in good agreement with the homogeneous state of stress represented by this load 

condition. In this case, all the crack orientations to the x-axis return the same limiting load. 

The load conditions corresponding to a given k and to its reciprocal, 1 k , are symmetric with 

respect to a crack inclination 0 45α = ° . In the intent to plot limiting load curves for k and 1 k  

satisfying the symmetry with respect to 0 45α = ° , the ideal limiting load idp  was defined as: 

 
2 2 2

0 1id x yp p p p k= + = + . (2)

 
The limiting load curves in the 

0
0 ,

maxid idk
p p

α
α −  plane for 0 k≤ ≤ +∞  are plotted in figure Fig. 

6.b. Each line in Fig. 6.b represents the function ( )0k idf p α= , returning the value of idp  at a 

given value of k. All the kf  lines together represent the function ( )0 ,idf p kα= , defining the 

value of the ideal limiting load in function of the crack orientation and the ratio between the 

loads in direction of the x- and y-axis. The lower envelope of the kf  curves was plotted in thick 

line in figure Fig. 6.b. This line represents the function F defined as: 

a) b) 
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( ) ( )
0

0 0cost
, min ,idF F k p k

α
α α

=
= = . 

 
The projection on the 0α -k plane of the F function, said F , returns the value of crk  (which is 

the same, the couple of normalised values cr
xp  and cr

yp ), corresponding to the minimum value of 

ideal limiting load idp  for a given 0α . In other words, the function F  can be expressed as the 

solution of the following differential problem: 
 

( ) ( )0
0

,
: 0idcr p k

F k
k
α

α
∂

= =
∂

. 

 

 
Fig. 6. a) Normalised limiting load yp  in function of the crack inclination 0α / 0β  for 0 1k≤ ≤ ; 
b) Normalised ideal limiting load idp  in function of the crack inclination 0α / 0β  for 0 k≤ ≤ +∞ . 
 
The third coordinate ψ  was defined as: 

 
1 keψ −= − . (3)

 
With this position, it is possible to give a finite 3D representation of idp , in function of 0α  ( 0β ) 

and k. Some examples of the 3D surfaces obtained for different values of axis orientation are 
given in Fig. 7. The Fig. 7.a is the 3D equivalent representation of the Fig. 6.b, while the Fig. 7.f 

is obtained by a 90° rotation of the normalised idp  surface around the normalised idp -axis. This 

last plot represents the function ( )0,idg p k α=  in the k first independent variable and 0α  second 

independent variable. The meridians of g give the functions ( )
0 idg p kα =  for a given value of 

0α . The lower envelope of the 
0

gα  functions gives the function: 

a) b) 
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Fig. 7. Some examples of finite 3D representation of idp , in function of 0β  and k. 

a) 
b) 

c) 
d) 

e) 
f) 
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( ) ( )0 0cost
, min ,idk

G G k p kα α
=

= = . 

 

Said G  the projection on the k- 0α  plane of the G function, G  returns the angle 0
crα  minimising 

idp  at a given k. G  is the solution of the following differential problem: 

 

( ) ( )0
0

0

,
: 0idcr p k

G k
α

α
α

∂
= =

∂
. 

 

As all the 
0

gα  functions intersect for 1k =  and they do not have any other point in common, the 

0 0
crα α=  minimising idp  at a given k results equal to: 

 

[ ]0

0 0 1
0,90 1

90 1

cr

k
k

k
α

≤ <⎧
⎪= =⎨
⎪ < ≤ +∞⎩

 

 
Finally, by way of illustration of the code potentialities, results regarding the computation on a 
geometry of finite dimensions are here presented. The computation on finite geometries allow to 
avoid the quantitative discrepancy between the experimental and via- stress intensity factors 
calculated results (Parton and Morozof 1978), due to the effect of the specimen boundaries on 
the stress field around the growing crack. In the case of a beam with two opposite pre-cracks 
submitted to skew-symmetric mixed-mode load in four-points, the numerical result was so 
accurate as to allow the complete description of the crack path (Fig. 8). In Fig. 8, the darker 
colour corresponds to the maximal compressive stress and the lighter colour corresponds to the 
maximal tensile stress. 
 

 
Fig. 8. Displacement - stress analysis of the beam under skew-symmetric four point bending. 
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CONCLUSIONS 
 

A first study on tensioned concrete plates was presented, based on an innovative size-
insensitive constitutive law. 
The adopted numerical model, founded on the CM, allows analysis in the discrete. The crack 
initiation is then studied without using the stress intensity factors. It was shown how the 
numerical results for plates of infinite dimensions loaded in Mode I are satisfying with respect to 
the load and geometrical parameters. It was also shown how the results on a solid of finite 
dimensions are highly accurate. Moreover, it is remarkable how the analysis for finite solids is 
performed directly, without having to apply corrective factors to the solution on an infinite 
geometry in the same load conditions. 
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