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Algebraic Formulation of Elastostatics: the Cell Method

E. Tonti1 and F. Zarantonello1

Abstract: The theory of elasticity is usually formulated using differential cal-
culus. We will show that it is possible to give an algebraic or discrete or finite
formulation, by starting directly from experimental laws, i.e. by avoiding any dis-
cretization process of the differential equations. This direct formulation can be
immediately used for numerical solution in elasticity problems and, from a theo-
retical point of view, it shows some interesting features which are hidden in the
differential formulation or are not considered at all.
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1 Introduction

1.1 Differential formulation

Since the birth of the differential calculus three centuries ago physical laws have
been expressed by means of differential equations. This is the case of the equations
of Laplace, Poisson, D’Alembert, Navier, Navier-Stokes, Fourier and Maxwell
right up to the equations of the twentieth century dealing with quantum mechan-
ics, such as those of Schrödinger, Dirac, Klein-Gordon and the Einstein equation
dealing with the relativistic gravitational theory.
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The reason why we express physical laws in mathematical terms is twofold: one is
the need to have general information about the properties of solutions and the other
is to get the solution of specific problems.

Regarding the solution of specific problems, the differential formulation does not
generally allow us to draw closed form solution, eccept in very special cases, with
simple geometries, homogeneous and isotropic materials, simple boundary condi-
tions. This requires us to make use of approximate methods, when possible, or
numerical methods as a last resort. Since the computer is indispensable for the
latter, this has opened up the era of computational physics.

1 University of Trieste, Italy.
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Computational physics, however, requires an algebraic formulation which is usu-
ally obtained by discretizing the differential equations: all the existing numerical
methods used to solve physical and engineering problems, such as FEM, BEM,
FDM, FVM, etc., do so, with the exception of cellular automata [Leamy (2008)].
By doing this, we transform a differential equation in a system of algebraic equa-
tions using purely mathematical notions, such as the orthogonality of the residuals
to the shape functions, the least square method, the collocation method, etc.. In
this way we have abandoned the physical content of the phenomenon described.
It seems reasonable to ask to ourselves: is the differential formulation the only
possible starting point to give a mathematical description of physical fields?

1.2 Algebraic formulation

In this paper we want to show that we can obtain an algebraic formulation of elas-
tostatics by starting directly from experimental facts, which avoids going through
the differential formulation. By doing this we remain closely linked to the physi-
cal and geometrical content of the problem. The direct algebraic formulation thus
obtained can be immediately used for the numerical solution. The notions involved
in this formulation are very simple, i.e. we avoid purely mathematical manipula-
tions of the equations. Hence we avoid the weak formulation, the forming of the
residual, the orthogonality of the residual to the shape functions, etc.

A direct algebraic formulation, using ÒglobalÓ variables, involves some advan-
tages, which include:

l b l i bl i ti th ti f f t t i
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• a global variable is continuous across the separation surface of two materi-
als, e.g. displacements and surface forces;

• we do not need jump conditions. The jump conditions regard the field
functions and they are derived from the continuity of global variables, e.g.
the strains;

• singularities do not arise. In fact, singularities come from the ratio between
a finite quantity and an infinitesimal extension, typically an area or a volume.
Since an algebraic formulation does not perform the limit, it is free of singu-
larities. Hence in the apex of a fracture and at the point of application of a
concentrated force the stress remains finite.

• global variables are, in general, quantities measured in laboratory, while
the corresponding densities are deduced from the global quantities.

The novelty of a direct algebraic formulation is that it highlights properties which
the differential formulation keeps hidden or does not take in consideration at all.
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It is surprising to note that for elastostatics, both in 2D and in 3D, the direct alge-
braic formulation leads to the same stiffness matrix as FEM, but it is obtained in a
simpler way.

We will see that, by performing a direct algebraic formulation, nothing is lost and
much is gained.

1.3 Existing literature

In previous papers it was shown how to apply this philosophy to scalar field the-
ories, such as thermal conduction and diffusion [Tonti (2001a)], acoustics [Tonti
(2001b)] and electromagnetism [Tonti (2001c)]. In [Tonti (2001a)] it was shown
that with a quadratic interpolation on simplicial meshes and dealing with scalar
problems, one obtains a fourth order of convergence.

A number of papers about the Cell Method have been published for computa-
tional electromagnetism, see <http://discretephysics.dica.units.it>. In particular the
Cell Method has been used for scalar problems in combination with the meshless
method: in 2D and in 3D with a second order convergence [Zovatto and Nicolini
(2003), (2006)], in 2D even with a fourth order convergence [Zovatto and Nicolini
(2007)].
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The Cell Method for elastostatics, presented in details in this paper, has already
been applied to elastostatic problems in 2D by [Cosmi (2001), (2002), (2005)]; to
bone tissue [Cosmi and Dreossi (2007), (2007b), (2008b)]; to bone tissue with the
meshless method by [Taddei, Pani, Zovatto, Tonti, Viceconti (2008)]; to fatigue
[Cosmi and Hoglievina (2008c)] and to elastodynamic problems [Cosmi (2005b),
(2008)]. Moreover with a quadratic interpolation one obtains a convergence of or-
der 3.5, while FEM obtains the third order [Cosmi (2001)]. The method has been
applied to elasto-plasticity and crack problems [Nappi, Rajgelj, Zaccaria (1999),
(2000)] and to masonry [Nappi, and Tin-Loi (2001)], [Ferretti, Casadio, Ricci, Di
Leo (2006), (2006b), (2008)]. The method has also been applied to fracture me-
chanics [Ferretti, Viola, Di Leo (2002), (2002b)], [Ferretti (2003), (2004), (2004b),
(2004c), (2005), (2005b)].

1.4 The main notions used

To obtain a direct algebraic formulation, we must pay the price of acquainting
ourselves with some new notions. These notions have been presented in [Tonti
(2001a)] and we recommend reading at least pages pp.237-248 of that paper. The
new notions are listed in the following

1. the division of physical variables into three classes: configuration, source
and energy variables;
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2. the notion of global variables;

3. the notion of space elements endowed with inner or outer orientation and
their classification;

4. the notion of primal and dual cell complexes endowed with inner and outer
orientation respectively;

5. the association of global variables with oriented space elements and the cor-
responding classification.

Let us summarize these notions.
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1.4.1 Classification of physical variables

As is well known, physical quantities can be divided into two classes, physical pa-
rameters and physical variables. But it is not well known that physical variables, in
turn, can be classified into three classes, according to the role they play in a theory.
In fact it is possible to divide them in configuration variables, source variables and
energy variables. This classification was introduced in electromagnetism by Pen-
field and Haus [(1967), p.155] but, unfortunately, after forty years still it has not
been used in literature.

1.4.2 Global variables

The expression global variable is seldom used in physics, while the expression in-
tegral variable is more common. Integral variables are those variables obtained by
performing a line or surface or volume integration of field functions. For example,
mass is the volume integral of mass density; vortex flux is the surface integral of
the vorticity vector; work along a line is the line integral of a force.

In [Tonti (2001a)] the term global variable was considered synonimous with inte-
gral variable. A subsequent experience has suggested the following definition.

DEF. With the term global variable in space we mean a physical variable which is
not a line or area or volume density of another variable.

From this definition it follows that all integral variables are global variables but
there are other variables which are global but not integral. For example, displace-
ment and temperature do not arise from the integration of field variables, hence
they are not integral variables. On the other hand, these variables are not densities
of other variables, hence they are global variables in space.
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1.4.3 Global variables and space elements

A fundamental property of global physical variables is that they are associated with
the space elements, i.e. points (P), lines (L), surfaces (S) and volumes (V). This
association takes into account the orientation of the space element in the sense that
the global variable changes sign when the orientation of the corresponding space
element is inverted.

By inspection, the following important property can be seen: configuration vari-
ables are associated with space elements endowed with inner orientation, while
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p ,
source variables are associated with space elements endowed with outer orienta-
tion.

To make clear this association, we must clarify what we mean by orientation of a
space element.

1.4.4 Oriented space elements

A space element can be endowed with two different kinds of orientation: the inner
and the outer orientation.

With reference to Fig.(1), the inner orientation of a line is a direction of motion
along the line, while the outer orientation is a direction of rotation around the line.
For example, consider the right-handed or left-handed rotation of a polarized light
beam.

The inner orientation of a surface is the inner orientation of its bounding line, while
the outer orientation is a sense of crossing the surface, from one side to another.

The inner orientation of a polyhedron, for example of a parallelepiped, is assigned
when we define an inner orientation to one of its faces and we propagate it to the re-
maining faces in a compatible manner. The term ÒcompatibleÓ means that the ori-
entation on two adjacent faces induces opposite orientations on the common edge.
The outer orientation of a parallelepiped means that the normals to the boundaries
are directed outwards or inwards.

The notion of orientation of a point is less evident. We will say that a point has
an inner orientation when the lines which end at the point are directed towards the
point, like a sink, or outwards from the point, like a source. A point has an outer
orientation when it is associated with a left or right handed screw.

Space elements endowed with inner orientation will be denoted by placing a bar
over their letters, i.e. P,L,S,V, while space elements endowed with outer orienta-
tion will be denoted by placing a tilde over their letters, i.e. ˜P,˜L,˜S,˜V. To simplify,
we will refer to a straight line element, to a plane surface element and to a par-
allelepiped. It is convenient to consider the geometrical object formed by a line
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Figure 1: The oriented space elements.

segment and a rectangle which crosses it at the midpoint and which is orthogonal
to it. Another geometrical object is the one formed by a parallelepiped and its cen-
tre of gravity. The plane surface is a rectangle which intersects the straight line
element to its midpoint and which is orthogonal to it.

Fig.(1) shows how the two types of orientation are linked to each other: Fig.(1a)
shows that the outer orientation of the line segment corresponds to an inner orien-
tation of the rectangle. Fig.(1b) shows that the outer orientation of a surface cor-
responds to the inner orientation of a segment which intersects it. Fig.(1c) shows
that the outer orientation of a point corresponds to the inner orientation of a volume
which contains it and Fig.(1d) shows that the inner orientation of a point corre-
sponds to the outer orientation of a volume which contains it.

The correspondence between an element of dimension p and an element of dimen-
sion n− p, where n is the dimension of the embedding space (in this case n = 3), is
called duality and the corresponding elements are called dual. Fig.(1) also shows
that we can move from an inner orientation of a space element to the outer orienta-
tion of its dual using the screw rule.

1.4.5 Primal and dual cell complexes

The shape of the geometrical objects of Fig.(1) and their orientation suggest assem-
bling them in a complex of cells as shown in Fig.(2). We can see how, composing
the geometrical objects, we generate two sets of cells, which are staggered. The
complex, whose elements have an inner orientation, is called primal cell com-
plex while the cell complex, whose elements are endowed with outer orientation,
is called dual cell complex.

If all elements of a cell complex, i.e. vertices, edges, faces and cells, are endowed
with inner orientation, the corresponding elements of the dual complex, i.e. cells,
faces, edges and vertices, automatically acquire an outer orientation, as shown in
Fig.(3).
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Figure 2: The primal cell complex (thin lines) and its dual (thick lines).

Figure 3: The inner orientations of the elements of the primal complex induce the
outer orientations on the elements of the dual complex.

Since global physical quantities have a natural association with the oriented space
elements, the two cell complexes constitute a geometrical framework for the alge-
braic formulation of every physical theory. This framework plays an analogous role
to the role of the coordinate system for the differential formulation. The systematic
use of a pair of cell complexes, a primal and a dual one, endowed with inner and
outer orientation respectively, suggests the name of Cell Method.

An essential point, which characterizes the direct algebraic formulation, is the im-
portance of the concept of dual space elements. Indeed, in the differential formula-
tion we refer to an infinitesimal parallelepiped of sides dx,dy,dz both to deal with
equilibrium and with the analysis of deformations. In contrast to this practice, with
reference to Fig.(4), let us consider a monodimensional element, subjected to its
weight, like a stalactite. We see that, to perform the analysis of deformation, next
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to a first subdivision (primal) it is opportune to consider a second subdivision (dual)
on which to impose the equilibrium. Indeed, given the displacement of the faces
of the primal cell, we can evaluate the strain and hence the stress in every primal
cell: with these stresses we can impose the equilibrium on the dual cells. Hence

σ + dσ

σz

z z

f dz

z+dzdz

u(z)

z

u+du

primal
element

dual
element

Figure 4: Deformation of a monodimensional element.

it is inappropriate to use the same subdivision for the analysis of deformations
and stresses. In fact, the equilibrium "at a point", which is a typical expression of
the differential formulation, must be understood as the equilibrium of a portion of
material which contains the point.

2 Elastostatics in 2D

2.1 Fundamental problem

The fundamental problem of elastostatics can be stated as follows: given an elastic
solid in an assigned reference configuration, given the volume forces, the external
surfaces forces, the material and the constraints, find the deformed configuration
and the stress distribution within the solid.

The main unknowns of the problem are the displacements in each point of the
domain from their reference configuration, i.e. the displacement vector u(P).

Remarks on notation. The term ÒvectorÓ is used here with two different meaning, corre-

sponding to two successive generalizations. The first is the geometric vector, commonly

used in physics and conceived as a direct segment with the well known operations defined

on it. It will be denoted by putting an arrow over the letter, i.e. v. The second generaliza-

tion is the algebraic vector considered as an ordered set of n numbers, subject to the well

known operations. It will be denoted in bold. i.e. v. When a geometrical vector is involved

in matrix calculations we can use the bold character as well. Hence, the two notations

v = ω×r and v = Ωr are equivalent.
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The main global variables of deformable solids are presented in Table 1.

Let us consider a cell complex in the region occupied by the solid in its reference
configuration, as usual. We take as unknowns the displacement vectors at every
node of the primal complex. Since every node of the primal complex lies inside a
dual cell, we consider this dual cell as a tributary region of the node and we impose
the equilibrium condition on it. In this way we write as many vectorial equations
as the numbers of nodes in the region, i.e. the number of the displacement vectors.
This is what is implicitly done in the differential formulation when we impose the
equilibrium to every infinitesimal volume enclosing a point. In fact the partial
derivatives involve the neighbouring of a point. This is similar to FVM using the
vertex-centred method, while FEM imposes the equilibrium to nodes.

Table 1: Classification diagram of elastostatics.
Table 1. Classification diagram of elastostatics.

displacement

displacement

gradient matrix

strain

matrix

volume

forces

stress

matrix

symmetric

stress matrix

U F

Hc ϵc Dc σc τc

KU = F

h = Hc L T = τc A

constitutive
equation

configuration variables

inner orientation
primal complex

source variables

outer orientation
dual complex

c

T

E E E E

E
fundamental equation

2.2 Analysis of deformation

An elastic body has a unique natural state to which the body returns when all ex-
ternal loads are removed. Nodal displacements, strains and stresses are measured
from this natural state: their values are counted as zero in that state [Fung (1964,
p.154)]. We will denote by u the displacement of a point P from its position P0 in
the natural state of the body taken as its reference configuration.

By definition, a solid is said to be deformable when the distance between its points
may change. The most common device to measure this variation is the strain gauge.
Using this tool we can see that the increase in length for unit length, at least in elas-
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Using this tool we can see that the increase in length for unit length, at least in elas
tic phase, is of the order of 0.000001, for common materials such as still, concrete,
wood, etc. This is a very small number, but with a finite value, not an infinitesimal
value! We will start the analysis of deformation taking into account this fact.
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Strain is usually defined starting from an infinitesimal deformation of an infinites-
imal rectangle. Since an algebraic formulation of mechanics of deformable solids
does not require partial derivatives, geometrical aspects become overriding on the
analytical ones.

With reference to Fig.(5), let P and Q be two points of the solid body in a refer-
ence configuration. Let L be the vector connecting these two points, defined as the
relative position vector. Let u(P),u(Q) be the displacements of the points P and Q
from the reference configuration. Let P and Q be the new position of the points
P and Q respectively. Let us consider the difference between the displacements of
the two points P and Q and denote it by h. We define

L
def
= r(Q)−r(P) relative position

h
def
= u(Q)−u(P) relative displacement

(1)

Since the relative displacement vector h refers to the couple (P,Q), it refers to the
relative position vector L, hence we will write h[L]. The relative displacement
vector h [Love (1944, p.37)] is the dual of the internal surface force T, as Table 1
shows.

shows.

O
x

y
u(P)

u(Q)
r (P)

r (Q)

t
L

u(P)

u(Q)

P

Q

P

Q h

Figure 5. The relative position vector L and the relative dis-

bu
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uni
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Figure 5: The relative position vector L and the relative displacement vector h of
two points P and Q .
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2.3 Displacement gradient

A region is said to be of regularity if the displacement is continuous, and has a
continuous variation inside the region. Since on a separation surface of two mate-
rials the displacement is continuous, but it has discontinuous variations, a region,
which contains a separation surface, cannot be a region of regularity. The reason
for decomposing a region, occupied by a homogeneous material, into regions of
regularity is that the displacement field can be locally considered as having a linear
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behaviour, i.e. the components ux,uy can be considered as affine functions of the
cartesian coordinates
{ u(x,y) = a+Hxx x+Hxy y

v(x,y) = b+Hyx x+Hyy y .
(2)

where a,b,Hxx,Hxy,Hyx,Hyy are unknown coefficients. Fig.(6) shows this behaviour.

Remark. Remind that an affine function has a linear behaviour, but this does not necessarily

mean that the function will assume the zero value at the origin of the coordinate system.

A region is characterized by a uniform deformation when the linear strain of a line
segment is the same for every parallel segments in the region. In a region where
the deformation is uniform, the displacement is affine.

Let us consider a triangular cell with vertices h,i, j.

Remark. The triangle is the simplest polygon and the tetrahedron is the simplest polihe-

dron. For this reason the triangle and the tetrahedron are the simplex of the plane and the

space respectively. A cell complex made of simplexes is called simplicial complex.

By writing Eq.(2) for every node, we can find the six unknown coefficient by solv-
ing the resulting system. The fact that in an affine displacement the number of the
unknown coefficients is equal to the number of the components of the displacement
at the vertices is a peculiar property of simplexes in spaces of whatever dimension.
Now we are interested in finding the four constants Hxx,Hxy,Hyx,Hyy. To this end

h

j

h

j

h

j
Li
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a) b) c)
i i i

Lj

Lh

Figure 6: a) Given the displacements of the three vertices of a simplex, b) an affine
displacement inside a simplex is defined. c) The horizontal and vertical components
clearly show their linear variation.

we apply Eq.(2) to the two vertices, for example i and j, of the edge hi of the
triangle. We obtain
{ ui −uh

= Hxx (xi − xh)+Hxy (yi −yh)
ui −uh = Hyx (xi − xh)+Hyy (yi −yh) .

(3)
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Since we use a simplex, it is possible (and convenient) to denote the edge hi by
Lj, i.e. with the label of the opposite vertex j. Hence, the relative position vector,
connecting the vertex h with the vertex i, will be denoted by Lj and the relative

displacement vector will be denoted by hj
def
= ui −uh. We see that the differences,

which appear in Eq.(3), in matrix notation can be written as follows

[ hjx

hjy ] = [ Hxx

Hxy

Hyx Hyy ]c [ Ljx Ljy ]
(4)

or

hj = Hc Lj and hi = Hc Li hh = Hc Lh . (5)

The four coefficients Hxx,Hxy,Hyx,Hyy are the elements of a matrix called the dis-
placement gradient matrix, we denote Hc. This matrix corresponds to the tensor
�u in the differential formulation.

Eq.(4) shows that the role of the displacement gradient matrix is to link the rela-
tive displacement vectors hj,hi,hh with the relative position vector Lj,Li,Lh of the
corresponding side.

To find the four coefficients in terms of the three nodal displacements of the ver-
tices, we will make reference to Fig.(7). We consider the three vertices in the same
order of the inner orientation of the simplex. To find the first two coefficients,

Pagina 13 di 40Algebraic Formulation of Elastostatics: the Cell Method

16/06/2012http://scholar.googleusercontent.com/scholar?q=cache:lzL5V4OMUx4J:scholar.googl...



h c

x

y

i

j

ujx

ujy

j

uhx

uix

x i

y i
i

i

xh

yh

hyj

xj

uiy

Ac

u
u

u

L

jL
hL

Figure 7: The three nodal displacements relative to the primal cell c.

Hxx,Hxy, we apply the first equation of the system, Eq.(4), relative to the x compo-
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nents, to the two edges jh and hi, obtaining

{ hix
= Hxx Lix +Hxy Liy

hjx = Hxx Ljx +Hxy Ljy .
(6)

We can write Eq.(6) as follows

[ Lix
Liy

Ljx Ljy ][ HxxHxy ]c= [
hix

hjx ].
(7)

Since the matrix L is known, we can invert it obtaining

[ Hxx

Hxy ]c
=

1

2Ac [ Ljy

−Liy

−Ljx Lix ]c [ hix hjx ]
(8)

where the coefficient 1/2Ac comes from the inversion of the matrix. In fact, it
can be easily seen that the determinant of the matrix is double the area Ac of the
simplex.

It can be noted that the three edge vectors form a closed polygon the sum of which
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It can be noted that the three edge vectors form a closed polygon the sum of which
is zero, i.e.

Lh +Li +Lj = 0 −→ {
(Lix +Ljx) = −Lhx

(Liy +Ljy) = −Lhy
. (9)

If we write the x components of the relative displacements, respectively hix and hjx

in terms of the x components of the nodal displacements, Eq.(8) can be written as
follows

[ Hxx

Hxy ]c
=

1
2Ac [ −Lhy

−Liy −Ljy

+Lhx +Lix +Ljx ]���������� uh
ui

uj

�
��������� .

(10)

It should be noted that in the mechanics of solids a plane cell complex makes sense
when the solid is considered as a layer of uniform thickness. In fact, we must
distinguish between the case of plane stress from that of plane strain. With plane
stresses, strains do not lie in a plane due to the lateral contraction. From this point of
view the sides of the simplexes are the traces in the plane of the faces of the prism,
as shown in Fig.(8). This remark enables to write the last equation in a more
elegant form, introducing the area vectors Ah, Ai, Aj of the faces of the prisms. The
introduction of the area vectors will be very useful in the 3D case. The x and y
components of the three area vectors can be expressed as follows

{ Ahx = +tLhy
Aix = +tLiy Ajx = +tLjy

Ahy = −tLhx Aiy = −tLix Ajy = −tLjx
. (11)
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x

Figure 8: The triangular prism of thickness t.

Hence, after some manipulation, we can rewrite Eq.(10)

[ Hxx

Hxy ]c
= −

1
2tAc [ Ahx

Aix Ajx

Ahy Aiy Ajy ]c �

��������� uh

ui

uj

�
��������� .

(12)

In an analogous way we can find a similar expression for the coefficients Hyx and
Hyy, obtaining

[ Hyx

Hyy ]c
= −

1
2tAc [ Ahx

Aix Ajx

Ahy Aiy Ajy ]c �

��������� vh

vi

vj

�
��������� .

(13)

Combining the latter formulae into one, we have

[ Hxx
Hxy

Hyx Hyy ]c
= −

1
2tAc [ Ahx

Aix Ajx

Ahy Aiy Ajy ]c �

��������� uhvh

ui vi

uj vj

�
��������� .

(14)

This formula gives the displacement gradient matrix Hc in term of the displace-
ments of the three vertices of the cell c.

The analysis of deformation is based on the analysis of the variation in length of
a line segment L connecting two points P and Q, shown in Fig.(5). Considering
the vector L = (Q−P) before deformation and the vector L = (Q −P ) after the
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deformation, we can write

(L+∆L)2 = (L+h)·(L+h)
L2 +2L∆L+(∆L)

2
= L

2
+2L·h+h

2
.

(15)

If we consider small displacements, the vector h is small and h2 and (∆L)2 will be
very small respect to L2. Hence, Eq.(15) becomes
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L∆L ≈ L·h . (16)

Dividing both members by L2, introducing the unit vectort= L/L and remembering
the definition of linear strain, we obtain

ϵ(t)
def
=

∆L
L ≈t·

h

L
(17)

or in matrix notation

ϵ ≈ t T Hc L
L = t T Hc t . (18)

Making explicit the compact notation we obtain

ϵ(t) ≈ t THc t = [ tx ty ][ Hxx
Hxy

Hyx Hyy ]c [ tx ty ] .
(19)

Hence, the linear strain in a direction is given by a quadratic form formed by the
displacement gradient matrix and the unit vector in that direction.

Since, a priori, the matrix Hc is not symmetric, it can be decomposed in the sum of
a symmetric and a skew symmetrix part, according to the relations

ϵc
def
=

1

2[
Hc +HT

c ] strain matrix

Ωc
def
=

1

2[
Hc −HT

c ] rotation matrix

(20)

and since it can be easily proved that a quadratic form of a skew symmetric matrix
vanishes, we see that the same result of Eq.(19) can be obtained using only the
symmetric part, i.e.

ϵ(t) ≈ t
T
ϵc t = [ tx ty ][ ϵxx

ϵxy

ϵxy ϵyy ]c [ tx ty ] .
(21)

Hence, to evaluate the linear strain along a direction, it is not necessary to use the
whole displacement gradient Hc, but it is enough to use the strain matrix ϵ.
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The components of the strain matrix, given by Eq.(21), are
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ϵxx = Hxx ϵxy = ϵyx =
1
2

(Hxy +Hyx) ϵyy = Hyy (22)

or, in general

ϵhh
def
= Hhh γhk

def
= Hhk +Hkh = 2ϵhk. (23)

Combining Eq.(14) and Eq.(22) we obtain

�
��������� ϵxx

ϵyy

γxy

�
���������c

=−
1

2tAc �

��������� Ahx0 Aix 0 Ajx 0
0 Ahy 0 Aiy 0 Ajy

Ahy Ahx Aiy Aix Ajy Ajx

�
���������c

�
������������������

vh

ui

vi

uj

vj

�
��������������

. (24)

Assuming

uc
def
= [uh vh ui vi uj vj]T

ϵc
def

= [ϵxx ϵyy γxy]T

(25)

we can write Eq.(24) in the short notation

ϵc = Bcuc . (26)

This equation coincides with the FEM one [Zienkiewicz (1971, p.94)] ; [Huebner
(1971, p.234)]. It should be noted that, using the area vectors Ai, we obtain a more
expressive formula than the one typically used in FEM.

2.4 Analysis of stress

When we perform the stress analysis, we explore how the internal surface forces
depend on the orientation of the plane surface to which they refer. This analysis
is usually performed in the neighbourhood of a point by imposing the equilibrium
of surface and volume forces on an infinitesimal tetrahedron. The tetrahedron is
chosen with three faces parallel to the coordinate planes of a Cartesian coordi-
nate system and a face with arbitary space orientation. The tetrahedron is assumed
infinitesimal because this makes possible to ignore volume and inertia forces as in-
finitesimal of higher order with respect to the surface forces. This is known as the
analysis of Cauchy.
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Remark. In the following we will denote by T the surface force and by F the volume
force: both are global variables, but T is associated with a plane surface ˜S endowed with
outer orientation and of area A, while F is associated with a volume ˜V endowed with outer
orientation and volume V. Hence we can write T [˜S] and F [˜V] respectively. The stress

vector t and the body force f are densitary variables and are defined by

t def
=

T

A
f def

=
F

V
. (27)

The vectors t and f inherit the association with surface and volume, hence we can write
t [˜S] and f [˜V] respectively.

In the following we will use only the global variables T and F.

To prove that volume forces can be neglected with respect to surface forces, let us
imagine a small cubic portion of water inside a lake. Let us denote by d the length
of the cube edge and with H the depth of the small cube. The ratio between the
volume forces and the surface forces (ρd3)/(ρd2H) decreases linearly with d when
the dimension of the cube decreases. From this evidence we are strongly oriented
to consider an infinitesimal volume element in order to eliminate both volume and
inertia forces. Since an algebraic formulation ignores the notion of limit, we will
not consider an infinitesimal volume element: hence an algebraic formulation is
necessarily approximate. We must be satisfied to know that surface forces prevail
over volume forces when the cell size decreases.

A uniform stress arises in a region when the internal surface force T, acting on
a plane surface, is invariant under translation of the plane surface. This implies
that volume forces are absent. This approximation is done also in FEM when we
assumes linear shape functions. Uniformity implies that the surface force T acting
on a surface described by the area-vector a is a linear function of the area-vector a.
This can be written

[ Tx

Ty ] = [ τxx

τxy

τyx τyy ][ ax ay ] .
(28)

This is the Cauchy equation which is usually deduced from the equilibrium equa-
tion of deformable solids. In brief

• in the differential formulation equilibrium is applied to an infinitesimal tetra-
hedron, so that volume forces, at the limit, disappear: the relation is exact;

• in the algebraic formulation the equilibrium is applied to a small, but finite,
tetrahedron and volume forces are neglected: the relation is approximate.

The stress matrix τ can be decomposed into its symmetric and skew-symmetric part
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as follows

σ
def
=

1
2

(τ+τT) µ
def
=

1
2(τ−τ

T) . (29)

The equilibrium to rotation imposes that µ = 0, hence only the symmetric stress
tensor σ remains. It follows that the stress inside every primal cell c is described
by only three variables, i.e. σxx,σyy,σxy. Eq.(28) can be rewritten in the alternative
form, called Voigt notation [see Belytschko, Liu, Moran (2000, p.615)]

[ Tx

Ty ]c= [
ax 0 ay

0 ay ax ]���������� σxx
σyy

σxy

�
���������c

. (30)

Eq.(30) displays the components of the stress matrix σ by an algebraic vector
which is preferable for numerical computation because Hooke’s law, usually ex-
pressed by a fourth order tensor, reduces to a 3×3 matrix in 2D.

Let us return to the surface forces acting on the faces of the dual cell, contained
in a primal cell c, as shown in Fig.(9). If we use the Voronoi dual, the point C is
the circumcentre, while, if we use the barycentric dual, the point C is the centre of
mass. In both cases the faces of the dual cell meet the edges of the primal cell c at
their midpoints. With reference to Fig.(9), let us denote by (T c(h)) and (T c(h))
the surface forces acting on the two faces AC and BC respectively. Since we must
sum these two forces for every primal cell c, which has a common node in h, their
sum is equal to the force T c(h) acting on the face AB connecting the midpoints of
the faces hi and hj. The reason is that, assuming uniformity of stresses, we have
excluded volume forces on the triangle ABC, hence (T c(h)) +(T c(h)) = T c(h).

h

i

j

c

A
C

B h

i

j

c

A
C

B

T c(h)

T c(h)

h

i

j

c

A

B

ach

Ac
h

T c(h)

Figure 9: The surface force on the cell c relative to the node h.

The area-vector ah of the face AB in Fig.(9) is half the area-vector of the face h of
the primal cell c, opposite to the vertex h, i.e. ah = A c

h /2
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p , pp , h /2.
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To evaluate the force T c(h) we use Eq.(30)

[ Tx(h)

Ty(h) ]c
=

1
2 [

Ahx 0 Ahy

0 Ahy Ahx ]c �

��������� σxx

σyy

σxy

�
���������c

. (31)

2.5 Constitutive equations

The constitutive relations of solid mechanics are tested on specimens, made of
homogeneous material, subjected to a system of forces which cause a uniform
stress and strain distribution over the thickness of solid, ignoring volume forces.

As it is known, a state of stress is said plane when the surface forces act in a plane:
in this case σz =0. This implies that an element of a solid can expand or contract in
the third dimension and that, consequently, the state of deformation is not plane.

Let us denote by E the elastic modulus, G the shear modulus, ν the Poisson ratio,

σ the axial stress, ϵ the axial strain and γ the shear strain. Referring to (Fig.10) and
using the principle of the superposition of effects we obtain

a) b) c) d)

σx σx σx σx

τ τ

σy

σy

σy

σy

Figure 10: Experiments which permit to infer the Hooke law.

�
������������

������������

ϵx =
1
E σx −

ν
E σy

ϵy =
1

E σy −
ν
E σx

γ =
1
G τ

G =
E

2(1+ν) . (32)

These equations can be written in matrix notation ([Zienkiewicz (1971, p.53)];
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[Burnett (1987, p.746)]) as follows

�
����

����
ϵx

ϵy

γ

�
����

����c=
1
E ����������

1 −ν 0
−ν 1 0
0 0 2(1+ν)

�
���������c

�
����

����

σx

σy

σxy

�
����

����c. (33)
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Inverting this equation we obtain

�
����
����

σx

σy

σxy

�
����
����c=

E
1−ν2 �

��������� 1 ν0

ν 1 0
0 0 (1−ν)/2

�
���������c

�
����
����

ϵx

ϵy

γ

�
����
����c. (34)

An analogous relation is valid for plane deformation, i.e. ϵz = 0

�
����
����

σx

σy

σxy

�
����
����c=

E
(1+ν)(1−2ν)

�
������������ 1−ν ν0

ν 1−ν 0

0 0
1−2ν

2

�
������������c�

����
����
ϵx

ϵy

γ

�
����
����c. (35)

For the cases of plane stress, plane strain and the three-dimensional one, the stress-
strain law can be written in the form

σc = Dc ϵc (36)

where Dc is a symmetric matrix, like the matrices of Eq.(34) and Eq.(35). Note
that the constitutive relations are applied in a finite region (not in an infinitesi-
mal region!) and are valid under conditions of uniformity of strain and stress and
material homogeneity. Let us remark that

• the equilibrium equation is valid whatever the size of the body to which it is
applied: it is valid both for a ship at rest on the sea and for an ion in a crystal,
hence it is valid for any dimension. It can be expressed in algebraic terms
using only the notion of sum of vectors;

• the link between the stress vector and the area vector is linear in a region of
uniform stress.

• the link between the relative displacement vector h and the relative position
vector L is linear in a region in which the displacement can be considered an
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vector L is linear in a region in which the displacement can be considered an
affine function of the coordinates, hence in a region of uniform strain;

• the constitutive equations are valid in small regions of uniform stress and
strain, hence in a region in which the material is homogeneous.

These four properties make possible a purely algebraic treatment of elasticity.

2.6 Equilibrium equation

With reference to Fig.(11d), let us consider a node h in which the displacement
vector u(h) is unknown. Let us denote with the same label h its dual cell and by
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E(h) the set of primal cells which have the node h as common vertex. Let Fc(h)
be the volume force acting on that part of the dual cell h which is contained in the
primal cell c and let T c(h) be the surface force acting from outside on that part of
the boundary of the dual cell h which is contained in the primal cell c. Moreover,
if the node h lies on the boundary, its dual cell is incomplete, as shown in Fig.(12)
and an external surface force B(h) must be added to the internal forces.

In the Cell Method the equilibrium condition is imposed on every dual cell, in
contrast with FEM where the equilibrium is imposed on nodes. With reference to
Figs. (11) and (12), assuming

T (h)
def
= ∑

c�E(h)

T c(h) F(h)
def
= ∑

c�E(h)

Fc(h) (37)

B(h)
def
= B (h)+ B (h) (38)

we can write the equilibrium for every dual cell h by the equation

T (h)+F(h)+ B(h) = 0 with h = 1,2,...N (39)

where N is the number of dual cells, i.e. the number of vertices of the primal cell
complex. or, in matrix notation

be added to the internal forces. of the primal cell complex.

cd

barycentric dual Voronoi dual volume forces surface forces Tc(h)

Td(h)

Te(h)
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a) b) c) d)

d

e

f

g
i

l

h h h h

F(h)

( )

T f (h)

Tg(h)

Ti(h)

Tl(h)

Figure 11. The auxiliary polygon is the same for barycentric and Voronoi dual cells.Figure 11: The auxiliary polygon is the same for barycentric and Voronoi dual cells.

∑

c�E(h)

[ Tx(h)

Ty(h) ]c+[
Fx(h)+ Bx(h)
Fy(h)+ By(h) ] = 0 . (40)

This equation expresses the equilibrium by means of simple geometrical and phys-
ical considerations. Note that, unlike what happens in the differential formula-
tion, we should not write boundary conditions separately, because boundary forces,
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h B (h)

B (h)

Figure 12: Equilibrium applied to the incomplete dual cell of a boundary node h.

which are generally assigned like volume forces, can be simply added to volume
forces of the corresponding dual cell. Moreover a concentrated force need not be
divided into three equivalent nodal forces according to the lever rule as in FEM.
These are significant differences compared to the differential formulation.

2.7 Fundamental equation

We call fundamental equation the relation which expresses the fundamental prob-

Pagina 24 di 40Algebraic Formulation of Elastostatics: the Cell Method

16/06/2012http://scholar.googleusercontent.com/scholar?q=cache:lzL5V4OMUx4J:scholar.googl...



q p p
lem. This equation links the nodal displacements with the volume forces of the
dual cells.

The internal surface forces depend on the deformation, hence on displacements. In
general volume forces are independent of them. When the internal surface forces
T c(h) are expressed in terms of the displacements of the node h and its neinghbour-
ing nodes, via stresses and strains, we obtain a set of algebraic equations which
contain the nodal displacements. Taking into account Eq.(31), we can write

∑

c�E(h)

1
2 [

Asx 0 Asy

0 Asy Asx ]c
DcBcuc +[

Fx(h)+ Bx(h)
Fy(h)+ By(h) ] = 0. (41)

Eq.(41) is the fundamental equation of elastostatics obtained with the Cell Method
and it is the algebraic correspondent of the Navier differential equation.

Since the fundamental equation must be written only for those nodes where the
displacements are unknown, the number of equations is equal to the number of
unknowns.

2.8 An alternative

A straightforward way to derive the system (39) is to compose the system by as-
sembling the coefficients. To this aim we will consider an arbitrary primal cell c and
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the three regions of the dual cells relative to the three nodes h,i, j. Fig.(13) shows

h

i

j

h

i

j

h

i

j

c c c

Tc(h)

Tc(i)
Tc(j)

Ach

Aci Ac
j

Figure 13: The three surface forces acting on those faces of the dual polygons
which enter the cell c.
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the three surface forces T c(h), T c(i), T c(j), which are relative to the three regions
of the three different dual cells. If we apply Cauchy equation in the form of Eq.(31)
to the three faces depicted with dashed lines and combine the three formulae into
one, we obtain

�
������������������������� Tx(h)

Ty(h)
Tx(i)
Ty(i)
Tx(j)
Ty(j)

�
�������������������������c

=
1
2

�
������������������������� Ahx0 Ahy

0 Ahy Ahx

Aix 0 Aiy

0 Aiy Aix

Ajx 0 Ajy

0 Ajy Ajx

�
�������������������������c

�
��������� σxx

σyy

σxy

�
���������c

. (42)

Introducing the algebraic vectors

Tc
def
= [Tx(h) Ty(h) Tx(i) Ty(i) Tx(j) Ty(j)]T c

σc
def
= [σxx σyy σxy]T c

(43)

we can write

Tc = (−tAc)BT
c σc . (44)

We see that the matrix of Eq.(42), apart from the factor −tAc, is the transpose of
that of Eq.(26). We note that the product tAc is the volume of the triangular prism
of area Ac and thickness t.
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Composing Eq.(44) with Eq.(34) and with Eq.(26) and assuming

kc
def
= (tAc)BT c Dc Bc

(45)

we can write

Tc = −kcuc . (46)

The composition of this formula is illustrated in the upper part of Table 3. Since
the matrix Bc coincides with the matrix of FEM, it follows that the local stiffness
matrix kc also coincides with the local stiffness matrix of FEM.
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Table 2: Links between variables of elastostatics in a 2D space.

configuration variables source variables
displacement volume force

[uhx uhy uix uiy ujx vujy]T
c

[fhx fhy fix fiy fjx fjy]T
c

↓ ↑
relative displacement surface force

[hhx hhy hix hiy hjx hjy]T
c

[thx thy tix tiy tjx tjy]T
c

↓ ↑
displacement gradient Hc general stress matrix τc

↓ ↑
symm. strain matrix ϵc symm. stress matrix σc

↓ ↑
[ϵxx ϵyy γ] T

c −→ Hooke −→ [σxx σyy σxy]T c

2.9 Global stiffness matrix

Denoting with N the total number of nodes of the region, let us introduce the fol-
lowing four global algebraic vectors

U
def
= [ ux(1) uy(1) ··· ux(N) uy(N) ]

T

T
def
= [ Tx(1) Ty(1) ··· Tx(N) Ty(N) ]

T

F
def
= [ Fx(1) Fy(1) ··· Fx(N) Fy(N) ]

T

B
def
= [ Bx(1) By(1) ··· Bx(N) By(N) ]

T
.

(47)

Let us proceed considering one cell at a time. By doing this, we do not build one
equation at a time, but we build the individual coefficients which must be properly
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located to form the final system. This operation, common to finite element method,
is called assembly.

The nodal vector uc is composed of the Cartesian components of the displacements
of the simplex, referred to a local numbering h,i, j. Such a vector can be obtained
by extracting the corresponding terms from the global vector U Introducing the
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by extracting the corresponding terms from the global vector U. Introducing the
location matrix Lc, [Hughes (2000), p.42], [Belytschko; Liu; Moran (2000), p.39]
we can write

uc = LcU . (48)

The global force vector T is formed by combining the vectors Tc. This is accom-
plished using the transposed matrix LT

c as shown in the formula

T = ∑c LT
c Tc . (49)

Hence, composing Eq.(46) with Eq.(48) we obtain

T = −∑c LT
c kcLc U . (50)

Introducing the global stiffness matrix K

K
def
= ∑c LT

c kcLc
(51)

we can write Eq.(50)

T = −KU (52)

as shown in Table 3. The system (39), which express the equilibrium equations,
can than be written in the compact form

−KU+F+B = 0 . (53)

This is the algebraic equivalent of Navier differential equation of elastostatics.

3 Elastostatics in 3D

3.1 Analysis of deformation

Let us consider a simplex c in the tridimensional space, i.e. a tetrahedron as shown
in Fig.(14). If the deformation is uniform inside the tetrahedron, the displacement
is an affine function, i.e.
�
����
����

u(x,y,z) = a+Hxxx+Hxyy+Hxzz

v(x,y,z) = b+Hyxx+Hyyy+Hyzz
w(x,y,z) = c+Hzxx+Hzyy+Hzzz

. (54)
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Table 3: Derivation of local and global stiffness matrices.
Table 3. Derivation of local and global stiffness matrices.

U TT = bK U -

uc = LcU T = ∑c LT
c Tc

T

uc ϵc = Bc uc ϵc σc = Dc ϵc σc bVc BT
c σc = Tc

Tc
E E E E E E

for every primal cell

global link

Tc = bkc uc

d
d

d  

 

c

We want to construct the displacement gradient matrix Hc inside the tetrahedron
c, like we have done for a triangle in the 2D space. Its vertices are denoted with
h,i, j,k and the corresponding nodal displacements with uh, ui, uj, uk. The 4 × 3 =
12 constants of the Eq.(54) can be expressed in terms of the 4×3=12 components
of the displacements of the vertices. Let us write the first equation of the system
Eq.(54), for all the vertices h,i, j,k of the cell c. Performing a linear combination
of the four equations so obtained, we have

�
��������� ui −uh

uj −uh

uk −uh

�
��������� =

�
��������� xi − xhyi −yh zi −zh

xj − xh yj −yh zj −zh

xk − xh yk −yh zk −zh

�
���������

�
��������� Hxx

Hxy

Hxz

�
���������c

. (55)

With reference to Fig.(14), we will start considering the vertex h and the three edges
Lα,Lβ,Lγ, which have the vertex h in common. Putting

hαx
def
= ui −uh hβx

def
= uj −uh hγx

def
= uk −uh

Lαx
def
= xi − xh Lβx

def
= xj − xh Lγx

def
= xk − xh

etc.

(56)

we obtain

�
��������� LαxLαy Lαz

Lβx Lβy Lβz

Lγx Lγy Lγz

�
���������c

�
��������� Hxx

Hxy

Hxz

�
���������c= ����������hαx

hβx

hγx

�
���������c

. (57)
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h
i

j

k
Ach

Ac
i

Ac
j

Ack

Lα

Lβ
Lγ

ı
�

k

x y

z

Aix

Akx

Ajx

Figure 14: The projections of the tetrahedra faces on the yz plane.

With reference to Fig.(14), we see that the face Ai is described by the area-vector

Ai =
1
2

Lβ×Lγ =
1
2 ���������

i j k
Lβx Lβy Lβz

Lγx Lγy Lγz . ���������
. (58)

In an analogous way, for the remaining faces, we have

Aj =
1
2

Lα×Lγ Ak =
1
2

Lβ×Lα. (59)

From these formulae we deduce the components of the area-vectors Ai, Aj, Ak

Aix =
1

2 ������
Lβy Lβz

Lγy Lγz ������ Aiy = −
1

2 ������
Lβx Lβz

Lγx Lγz ������

Aiz =
1

2 ������
Lβx Lβy

Lγx Lγy ������

(60)

Ajx =
1
2 ������

Lαy Lαz

Lγy Lγz ������ Ajy = −
1
2 ������

Lαx Lαz

Lγx Lγz ������

Ajz =
1
2 ������

Lαx Lαy

Lγx Lγy ������

(61)
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Akx =
1
2 ������

Lβy Lβz

Lαy Lαz ������ Aky = −
1
2 ������

Lβx Lβz

Lαx Lαz ������

Akz =
1
2 ������

Lβx Lβy

Lαx Lαy ������.

(62)

Moreover, since the four triangles are faces of a polyhedron, the sum of the area-
vectors of the faces vanishes. Hence

Ah = −(Ai +Aj +Ak) . (63)

The x,y,z components of Ah are given by

�
����
����

Ahx = −Aix −Ajx −Akx

Ahy = −Aiy −Ajy −Aky

Ahz = −Aiz −Ajz −Akz.
(64)

The oriented volume of the tetrahedron is given by

Vc =
1

6
(Lα×Lβ)·Lγ =

1

6 ���������

Lαx Lαy Lαz

Lβx Lβy Lβz

Lγx Lγy Lγz ���������.
(65)

The matrix, which corresponds to this determinant, coincides with the matrix L
given by Eq.(57). The determinant is equal to 6Vc. To invert the matrix L, let us
observe that the minors of the matrix have a simple geometrical meaning, as the
equations (60), (61), (62) show: each one is the double of the (oriented) area of the
projections of the tetrahedral faces on the three coordinate planes, with opposite
sign. Using Cramer’s rule, we can write

�
������������������������

������������������������

Hxx =
1

6Vc ��������� hαx

Lαy Lαz

hβx Lβy Lβz

hγx Lγy Lγz ���������

=
1

6Vc [������ Lβy

Lβz

Lγy Lγz ������hαx−������
Lγy Lγz

Lαy Lαz ������hβx+������
Lαy Lαz

Lβy Lβz ������hγx]

= −
1

3Vc [Aixhαx +Ajxhβx +Akxhγx]

. (66)
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[ j β γ ]

= −
1

3Vc [Ahxuh +Aixui +Ajxuj +Akxuk]
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Doing the same operation for Hxy and Hxz, we obtain
�
������������

������������

Hxx = −
1

3Vc [Ahxuh +Aixui +Ajxuj +Akxuk]

Hxy = −
1

3Vc [Ahyvh +Aiyvi +Ajyvj +Akyvk]

Hxz = −
1

3Vc [Ahzwh +Aizwi +Ajzwj +Akzwk].

(67)

An analogous equation can be obtained by performing the same process on the
second and third row of the system (54). In this way we can find the whole matrix
Hc.

Introducing the normal strain ϵhk and the shear strain γhk

ϵhh
def
= Hhh γhk

def

= Hhk +Hkh = 2ϵhk (68)

we can write

�
������������������������� ϵxx

ϵyy

ϵzz

γyz

γxz

γxy

�
�������������������������c

=

−
1

3Vc

�
������������������������� Ahx0 0 Aix 0 0 Ajx 0 0 Akx 0 0

0 Ahy 0 0 Aiy 0 0 Ajy 0 0 Aky 0
0 0 Ahz 0 0 Aiz 0 0 Ajz 0 0 Akz

Ahy Ahx 0 Aiy Aix 0 Ajy Ajx 0 Aky Akx 0
Ahz 0 Ahx Aiz 0 Aix Ajz 0 Ajx Akz 0 Akx

0 Ahz Ahy 0 Aiz Aiy 0 Ajz Ajy 0 Akz Aky

�
��������

�
�������

vh

wh

...
...
uk

vk

wk

�
����

.

(69)

Making the assumptions
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g p

uc
def
= [uh vh wh ui vi wi uj vj wj uk vk wk]T c

ϵc
def
= [ϵxx ϵyy ϵzz γxy γyz γzx]T c

(70)

we can write

ϵc = Bc uc (71)

which has the same form as Eq.(26).
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3.2 Analysis of stress

We will consider a simplicial complex with its barycentric subdivision. Every dual
polyhedron is conceived as a tributary region of the corresponding vertex. Given
a plane surface, contained in the cell c, described by an area-vector Ac, we can
evaluate the surface force Tc acting on it, using Eq.(73).

With reference to Fig.(15d), we consider the shaded surfaces 1, 2, 3 of the dual
polyhedron h contained in the cell c.

The sum of Ah, Ai, Aj, Ak vanishes and also the sum of the area-vectors A1, A2, A3, A4, A5, A6

vanishes. Since the area-vectors A4, A5, A6 are one third of the corresponding area-
vectors of the faces of the primal cell c, we obtain

A1+A2+A3 = −(A4 +A5 +A6) = −
1
3

(Ak +Ai +Aj) =
1
3

Ah . (72)

Hence, the sum of the vectors A1, A2, A3 is one third of the area-vector Ah. This
surface is shown in Fig.(15f). We assume that inside every primal cell c the ma-

a) b) c)

T c(h)

h h h

i i i

j j j

k k k

k k k
Ac2

A6
Ah/3
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d) e) f)

T c(h)
T c(h)

h h h
i i i

j j j

Ac1

Ac
3 A4

A5

1

2

34
5

6
4

Ah/4

1/ /3

Figure 15: The construction of the six faces of the dual polyhedron contained in
the tetrahedron.

terial is homogeneous and the strain is uniform. Hence, also the stress is uniform.
By denoting with T c(h) the sum of the forces acting on the faces 1, 2, 3, due to the
supposed uniformity of the stress, this force is equal to the force associated with
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the shaded plane area of Fig.(15f): this face is parallel to the face Ah and has area
Ah/3. If we apply the three dimensional analogous of the Cauchy formula, Eq.(30),
to the shaded area, we obtain

�
��������� Tx(h)

Ty(h)
Tz(h)

�
���������c

=
1
3����������

Ahx 0 0 Ahy 0 Ahz

0 Ahy 0 Ahx Ahz 0
0 0 Ahz 0 Ahy Ahx

�
���������c

�
�������������������
σyy

σzz

σyz

σxz

σxy

�
���������������

(73)

which is the homologous of Eq.(31). Moreover

�
��������������������������������������������������

Ty(h)
Tz(h)
Tx(i)
Ty(i)
Tz(i)
Tx(j)
Ty(j)
Tz(j)
Tx(k)

�
���������������������������������������������

=
1
3

�
�����������������������������������������0 0 Ahy 0 Ahz

0 Ahy 0 Ahx Ahz 0
0 0 Ahz 0 Ahy Ahx

Aix 0 0 Aiy 0 Aiz

0 Aiy 0 Aix Aiz 0
0 0 Aiz 0 Aiy Aix

Ajx 0 0 Ajy 0 Ajz

0 Ajy 0 Ajx Ajz 0
0 0 Ajz 0 Ajy Ajx

Akx 0 0 Aky 0 Akz

�
��������������������

�
�������������������
σyy

σzz

σyz

σxz

σxy

�
���������������

(74)
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Ty(k)
Tz(k)

0 Aky 0 Akx Akz 0
0 0 Akz 0 Aky Akx

which is the homologous of Eq.(42). The matrix which appears in this equation,
apart from the factor −Vc, is the transpose of the matrix we found in Eq.(69)

Introducing the local algebraic vectors

Tc
def
= [Tx(h) Ty(h) Tz(h) ··· Tx(k) Ty(k) Tz(k)]T c

σc
def
= [σxx σyy σz σyz σxz σxy]T c

(75)

we can write

Tc = −Vc BT
c σc . (76)

This equation is the same as Eq.(44), which we found in the two-dimensional case.

Moreover, introducing the global algebraic vectors, which are analogous to the ones
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in Eq.(47)

U
def
= [ ux(1) uy(1) uz(1) ··· ux(N) uy(N) uz(N) ]

T

T
def
= [ Tx(1) Ty(1) Tz(1) ··· Tx(N) Ty(N) Tz(N) ]

T

F
def
= [ Fx(1) Fy(1) Fz(1) ··· Fx(N) Fy(N) Fz(N) ]

T

B
def
= [ Bx(1) By(1) Bz(1) ··· Bx(N) By(N) Bz(N) ]

T

(77)

we can write the same equations of Section 2.9, thus obtaining the fundamental
equation in the same form as Eq.(53).

4 Conclusion

The five notions listed a the beginning of this paper derive from a detailed analysis
of physical variables which is usually disregarded. These notions derive from the
close link between global variables and space elements. The differential formula-
tion ignores this link because it does not make use of global variables. The main
reason for this loss is the use of field functions used to perform the derivatives,
which are the fundamental ingredients of the differential formulation In the dif
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which are the fundamental ingredients of the differential formulation. In the dif-
ferential formulation all variables, being described by field functions, are functions
of point. No other space elements have place in the differential formulation. In
this sense the differential formulation has lost its link with geometry, a link that is
indispensable for an algebraic formulation.

If we look at the definition of field functions, we see that most of them are obtained
from global variables by calculating their densities and rates. All of these are mean
densities. Later, by performing the limit, we obtain the field functions and, by per-
forming the partial derivatives on them, we develop the differential formulation. We
can see that if we avoid the limit process, we can perform a decription of physics
using global variables, which not only refer to points, but to the other space ele-
ments too. This is the reason why in the direct algebraic formulation we need to
use global variables, rather than field functions. By using global variables the link
with geometry is mantained.

Based on this observation, we obtain a direct algebraic formulation. But why is it so
important to re-establish this link with geometry? Because, by paying attention to
the geometrical origin of variables, new interesting properties do appear and, from
a theoretical point of view, we obtain in a simpler way the same results obtained
by the differential formulation.

How can we highlight the link between physical variables and geometry? The an-
swer is: by analyzing the process of creation of physical variables. Let us note that
balance laws, circuital laws and constitutive relations, usually written in differen-
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tial terms, are also valid in global terms. For example, the equilibrium condition
is valid for a finite portion of a body not only for an infinitesimal portion. The ap-
plication of the balance on infinitesimal portions is a practice justified only by our
habit of using the differential method. Furthermore, the constitutive relations are
tested in laboratory under conditions of uniformity of stress on finite samples. If the
physical laws and the constitutive relations can be written directly in an algebraic
form, why not use global variables from the very beginning, thus avoiding the use
of the field functions?

In this direct formulation we have obtained the same fundamental equation of FEM
without going through the weak formulation of the differential equations of elas-
ticity. The spirit of the present formulation is quite different from FEM approach
because the surface forces are calculated with direct geometrical considerations,
imposing the equilibrium on the dual cells of every node

Pagina 36 di 40Algebraic Formulation of Elastostatics: the Cell Method

16/06/2012http://scholar.googleusercontent.com/scholar?q=cache:lzL5V4OMUx4J:scholar.googl...



imposing the equilibrium on the dual cells of every node.

The method differs also from the Finite Volume Method, even though it is similar to
the node-centred case, because we do not perform an integration of field variables,
but we use global variables directly.

We want to stress that physical laws can be written as relations between global
variables directly: so equilibrium states that the sum of forces, i.e. global variables
in space, vanishes.

Acknowledgement: We are indebted to professor Massimo Fragiacomo and to
the engineer Martino Pani for their thorough review of the manuscript.
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