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Abstract 
In the present paper fracture criteria for predicting crack initiation angles in an orthotropic 
homogeneous plate, with an inclined crack and subjected at infinity to a biaxial uniform load, 
are studied. The crack initiation angle θ0 can be calculated as a function of crack geometry and 
external loading applied at infinity. The numerical analysis is performed for a wide range of 
anisotropic material properties and applied loads.  
Singular solution to specify elastic fields is generally incorrect and the effect of non-singular terms of 
the series expansion for the stress at the crack tip region is underlined. The estimation of the error 
associated with the singular terms representation is pointed out for some calculated parameters 
involved in the numerical analysis. 
Stress and displacement components including non-singular terms are calculated making use of an 
unconventional approach to the derivation of the complex variable expressions of the elastic fields.  
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1 Introduction 

Of concern in this paper is the study of the elastostatic fracture behaviour of an orthotropic plate with 
an inclined crack and subjected at infinity to a biaxial uniform load.  
For homogeneous, isotropic and linearly elastic material, several fracture criteria for predicting 
initiation angles have been proposed. Among the mentioned criteria we remind the ones governed by 
circumferential stress σθ [1], and the strain energy density factor S [4]. An analysis of mixed mode 
crack initiation angles under different load condition is reported in [3] in the case of isotropic material. 
The main purpose of this paper is the extension of the fracture criteria, listed above, to predict the 
crack initiation angle θ0 in orthotropic material. 
A paper engaged in this topic and related to the present one is that of  Ye and Ayari [6], in which 
mixed models of crack growth are evaluated for orthotropic solids with material symmetries. 
Another aim of this paper is to point out the effect of load biaxiality on the near tip elastic field and on 
the angle of incipient crack propagation.  
The influence of load biaxiality on fracture response of cracked isotropic bodies has been studied by 
Eftis et al. [7], Eftis and Subramonian [8], among others. Another paper engaged in this topic and 
related to the present one is that of Lim et al. [2] in which the effects of the load parallel to the crack 
direction on the asymptotic Mode-I elastic fields are pointed out and its influence on the angle of 
initial crack extension are illustrated. 
Finally another purpose is to report a simple method in order to obtain the complex variable 
formulation of plane orthotropic elasticity, which is an adjustment to the static case of an approach 
previously used by Piva and Viola [5] in solving elastodynamic problems. The equilibrium equations 
of an orthotropic medium are reduced to a first order system involving a four dimensional vector. A 
similarity transformation is introduced to obtain a canonical form as  a couple of independent  Cauchy-
Riemann systems.  

2 Basic equation 

Consider an orthotropic homogeneous continuum with the axes of elastic symmetry coinciding with 
rectangular  coordinates axes x, y, z. The displacement component along the z-axis, as well as all 
derivates with respect to the z-variable are assumed to vanish. The constitutive equations become: 
 
 

11 12x

u v
C C

x y
σ ∂ ∂= +

∂ ∂
 (1) 

 
12 22y

u v
C C

x y
σ ∂ ∂= +

∂ ∂
 (2) 

 
66xy

u v
C

y x
τ

 ∂ ∂
= + ∂ ∂ 

 (3) 

 
where u(x,y) e v(x,y) are the x and y components of the displacement vector, respectively.  
The parameters in (1)-(3) are related to the elastic constants according as a state of plane strain or 
plane stress is considered. 
The equilibrium equations are: 
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By introducing the four dimensional vector function: 

 
 

( ) ( )T

1 2 3 4, , , , , , ,
u u v v

x y
x y x y

 ∂ ∂ ∂ ∂
Φ = Φ Φ Φ Φ ≡  ∂ ∂ ∂ ∂ 

 (7) 

 
the equilibr ium equations (1)-(3) can be written as 
 

 
Á 0

x y
∂Φ ∂Φ+ =
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 (8) 

 
where Α is the following constant matrix: 
 

 

1 1

0 2 0
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Á
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α β

β α
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 (9) 

 
Limiting attention to the imaginary eigenvalues of matrix A, one obtains:  
 

 
1 1ipλ = ,      2 1ipλ = − ,      3 2ipλ = ,      4 2ipλ = −  (10) 

 
with 
 

 ( ) 1
2 2

1 1 1 2p a a a= − −  , ( ) 1
2 2

2 1 1 2p a a a= + −  , 1 1
1

4
2

a
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Turning to the approach already used in [5], equation (8) simplifies to: 
 

 
Â 0

x y
Ψ Ψ∂ ∂+ =
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 (12) 

 
where the vector Ψ and the matrix B are linked to the vector Φ and matrix A by 
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In terms of its components equation (12) gives two decoupled systems of the Cauchy-Riemann type 
which are satisfied by the following analytic functions: 
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Introducing the potentials 
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and using (12), (15) and (16), equations (1)-(3) lead to the stress components as follows 
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From equations (13) we obtain the displacement components: 
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Where λ1(z1) and λ2(z2) are the primitives of Λ1(z1) and Λ2(z2), respectively. 
It can be shown that the uniform stress field at infinity 
 

 ( )
1Txσ ∞ =    ,      ( )

2Tyσ ∞ =    ,      ( )
3Txyτ ∞ =  (22) 

 
leads to the following behaviour of the potential functions 
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(24) 

 
where ( )0

1 1zΛ  and ( )0
2 2zΛ  are the analytic functions vanishing at infinity. 

3 The problem of inclined crack 

Consider an orthotropic and infinite medium with a crack , of length of 2l, inclined by an angle ω with 
respect to X-axis of a Cartesian orthogonal system O (X,Y) (fig. 1). The crack is supposed to be 
aligned with one of the three orthogonal axes of elastic symmetry of the body, coincident with x-axis 
of the coordinate system O (x,y). 
 

 
Fig. 1. The inclined crack geometry 

 
We admit that the orthotropic body is subjected at infinity to a uniform biaxial load applied along X 
and Y directions. Referring to the orthogonal system O (x,y), the uniform biaxial load can be expressed 
by: 

-l

l



 A. Piva, C. Carloni, E. Viola, E. Ferretti  
 

 
 

6 

 ( ) ( ) ( )1
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 ( ) ( )3
TT 1 k sin2
2xyτ ∞ ≡ = − ω  (27) 

 
where k is the biaxial load factor. The problem is solved by determining the analytic functions 

( )0
1 1zΛ  and ( )0

2 2zΛ of equations (23) and (24), for Mode-I and Mode-II problems with 
uniform self-equilibrating tractions applied to the edges of the crack and null stress at infinity. 
Making use of expressions (17) – (19), the stress components can be found: 
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as well as the displacement component: 
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4 The near tip elastic fields 

By use of  Taylor series expansion of function F(zj) and G(zj), setting: 
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2
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θθ θ
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And introducing the stress intensity factors I 2K T lπ=  , II 3K T lπ= , the following asymptotic 
expressions of  stress components can be obtained:  
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Similarly for displacement components: 
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5 Fracture criteria 

5.1 Maximum circumferential tensile stress theory 

The maximum circumferential tensile stress criterion for isotropic materials maintains that the crack 
extension angle θ0 is individuated by the direction orthogonal to the one on which the circumferential 
stress σθ attains a positive maximum value. This criterion can not be applied to orthotropic materials 
for which the critical stress intensity factor varies with the polar angle θ. Assuming that KIC

x and KIC
y 

are the critical stress intensity factors along the axes x and y of elastic symmetry, the critical stress 
intensity factor on the θ  plane will be: 
 

 2 2
IC IC ICK K sin K cosx yθ θ θ= +  (40) 

 
So, for orthotropic materials the maximum circumferential stress criterion [9] consists of finding the 
maximum of the following function: 
 

 

IC

2
K

r
R θ

θ θ

σ π=  (41) 

 
From the numerical analysis point of view it is convenient to analyse the maximum of the normalised 
form of equation (41), which is: 
 

 
2 2*

2 2ICIC IC IC IC

IC

2
sin cos sin2

KK /K K / K sin cos
K

x y xy
yx x

x

r
T l

θ

θ
θ θ

σ
σ θ σ θ τ θσ

θ θ

+ −
= =

+
 (42) 

 
Considering three orthotropic materials, Glass-epoxy, Graphite-epoxy (Vf=0.65) and Graphite-epoxy 
(Vf=0.50) [10],  equation (42) can be used to obtain the crack initiation angle θ0 for different load 
conditions. Fig. 2 shows the crack extension angle for the orthotropic materials mentioned, assuming 
that the ratio KIC

x/ KIC
y is equal to the ratio of the elastic moduli along the x and y direction. 

It can be noted that the crack extension angle, for a fixed value of crack extension angle, depends on 
elastic properties of the orthotropic material. When the difference between the elastic moduli on the 
principal direction becomes large, the crack extends with a small polar angle, meaning that the crack 
extends very near the collinear direction. 

5.2 Strain energy density theory 

The strain energy density criterion can be applied to predict the crack propagation in isotropic 
materials [4]. In this work the criterion is extended to an orthotropic medium with an inclined crack 
aligned with one of the axes of elastic symmetry of the body. 
Making use of the stress and strain components σij and εij, the strain energy density can be written as 
 
 d 1

d 2 ij ij

W
V

σ ε=  (43) 
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Fig. 2 Crack initiation angle vs. crack inclination angle for different orthotropic materials and for some 

values of the biaxial load parameter  (using circumferential stress criterion). 
 

For the elastostatic plane problem of an infinite orthotropic medium equation (43) becomes: 
 

 2 2 2
22 11 12

2
1211 22 66

2d 1
d 2

xyx y x yC C CW
V C C C C

σ σ σ σ τ + −
= + −  

 (44) 

 
where the parameters that appear in equation (44) are related to elastic constants according as the case 
of plane stress or plane strain is considered. 
For isotropic materials the relative minimum of dW/dV is assumed to be associated with the direction 
of crack initiation and the crack is assumed to grow when dW/dV reaches a critical value (dW/dV)c.  
In the orthotropic case, (dW/dV)c is a function of the polar angle which we admit to be as follows: 
 
 

2 2d d dsin cos
d d d

x y

c c c

W W W

V V V

θ

θ θ     = +          
 (45) 

 
where (dW/dV)c

x and (dW/dV)c
y are the critical energy densities in x and y directions, respectively.  

The crack initiation angle, for orthotropic materials, can be obtained minimizing the ratio (dW/dV)/ 
(dW/dV)c

θ 
Referring again to the Glass-epoxy, Graphite-epoxy (Vf=0.65) and Graphite-epoxy (Vf=0.50) 

[10], with a given 
d d
d d

x y

c c

W W
V V

   
      

 ratio assumed to be equal to the square of elastic moduli ratio 

along the axes of elastic symmetry, the corresponding crack initiation angle θ0 can be obtained as a 
function of the crack inclination angle ω, for different values of the biaxial load parameter k (Fig. 3).  
Note that similarly to maximum tensile stress criterion, the crack initiation angle depends on the elastic 
properties of the orthotropic material. In particular, for Glass-Epoxy θ0 is different form zero also for 
ω=0° and ω=90°.  
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Fig. 3 Crack initiation angle vs. crack inclination angle for different orthotropic materials and for some 

values of the biaxial load parameter (strain energy density criterion). 
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