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Abstract:  The procedure of the effective law outlined 
in this paper [Ferretti (2001); Ferretti and Di Leo 
(2003); Ferretti (2004b)] is an experimental procedure 
for identifying the constitutive law in uniaxial compres-
sion of brittle heterogeneous materials, and is based on 
the physical, analytical and numerical discussions about 
the existence or otherwise of strain-softening [Ferretti 
(2004a); Ferretti (2005)].  This procedure allows us to 
correct several incongruities that characterize the aver-
age stress versus average strain diagrams: it produces 
evidence against strain-softening in uniaxial compres-
sion [Ferretti (2004b)], whose existence may be ques-
tioned from a physical point of view [Ferretti (2004a); 
Ferretti (2005)], it provides effective stress versus ef-
fective strain laws that are size-effect insensitive [Fer-
retti (2004b)] and identifies Poisson’s ratio and volu-
metric strain, which are independent of the degree of 
damage during the compression test [Ferretti (2004c)], 
as should be the case for all constitutive parameters.  
The procedure also allows us to explain the gradual 
change of shape in the average stress versus average 
strain laws when a confinement pressure is applied to 
the specimen [Ferretti and Di Leo (2003)].  Moreover, 
the procedure emphasizes how the final stage in com-
pressed concrete specimens is largely characterized by 
the propagation of a macro-crack, rather than by crush-
ing.  This puts a question mark on the existence of 
creep, which, according to the identified effective pa-
rameters, seems mainly to be a structural effect due to 
crack propagation [Ferretti and Di Leo (2008)].  In this 
paper, the identification procedure of the effective law 
is applied to cubic and cylindrical concrete specimens, 
in order to verify whether or not the effective law is 
sensitive to shape-effect.  Two different concrete mix-
tures were used, the one of plain and the other of rub-
berized concrete.  New relationships were also pro-
posed for design purposes, both for plain and rubber-
ized concrete. 
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1 Introduction 

The main motivation at the basis of the identification 
procedure of the effective law for brittle materials, such 
as concrete, is the idea that the structural behavior of 
the specimen used in uniaxial compression tests must 
be differentiated from the constitutive behavior of the 
specimen material.  This idea emanates from the failure 
mechanism of brittle specimens, which is characterized 
by the propagation of macro-cracks (Fig. 1) that modify 
the resistant structure of the specimen (Fig. 2) through-
out the compression test.  As a consequence, an identi-
fying model, and not a scale factor (Fig. 3), is needed in 
order to derive the stress-strain law, σ ε− , which per-
tains to the material, from the experimental load-
displacement law, N u− , which pertains to the struc-
ture.  This means that the σ ε−  and N u−  curves may 
not be homothetic, posing the question about the possi-
ble plot of the material law, which, in the following, 
will be called the effective law, eff effσ ε− , in order to 
distinguish it from the average stress versus average 
strain law, σ ε− , traditionally assumed as the constitu-
tive law. 
Ferretti and Di Leo (2003) and Ferretti (2005) have 
widely discussed how some theoretical research of the 
last century [Hadamard (1903); Hudson, Brown, and 
Fairhurst (1971); Dresher and Vardoulakis (1982); Ber-
gan (1983); Hegemier and Read (1983); Sandler and 
Wright (1983); Wu and Freud (1983)], demonstrating 
that strain-softening is not a material property, and sub-
sequently forgotten when the experimental N u−  laws, 
which are the softening laws, seemed to state the oppo-
site, assume a new significance in this context.  Ferretti 
(2004a) likewise moves in this direction, analyzing the 
problem of the existence of strain-softening from ana-
lytical and physical perspectives. 
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Ferretti and Di Leo (2003) and Ferretti (2004b) pre-
sented some details of the identification procedure of 
the effective law, providing results for cylinders of 
varying ( )2H R  ratio (slenderness ratio).  These re-
sults actually show that the effective law is not a soften-
ing law, supporting the aforementioned theoretical re-
search with an experimental procedure.  Moreover, the 
effective laws for varying ( )2H R  ratios do not seem 
to be sensitive to size-effect, which must be the case for 
a properly identified constitutive relationship. 

Figure 1:  Vertical cracks on the surface of a concrete 
specimen originated by the splitting of incoherent mate-
rial isolated by the propagation of internal macro-cracks 

Figure 2:  Concrete specimen at the end of the test, af-
ter removal of the outer part 

 

u H= Δ  û   

Figure 3:  Traditional identification of mono-axial con-
stitutive law by experimental tests 

The effective law’s insensitiveness to parameters that 
are not related to the material directly is further investi-
gated by Ferretti (2004c), who provides a discussion on 
the proper identification of Poisson’s ratio and volumet-
ric strain (dilatancy).  It was found that Poisson’s ratio 
is almost independent of the longitudinal strain, while it 
grows indefinitely when it is identified using ε  instead 
of effε .  Moreover, it was found that concrete never ex-
hibits dilatancy.  What we know as concrete dilatancy 
[Brace, Paulding, and Scholz (1966); Di Leo, Di Tom-
maso, and Merlari (1979)] is an apparent effect, caused 

by an identification technique that inadequately evalu-
ates the influence on the acquired data of a failure 
mechanism with splitting of the material isolated by the 
propagation of the dominant crack (Fig. 2).  A further 
consequence of this inadequate identification technique 
is the common belief that concrete exhibits a viscous 
behavior when subjected to constant loads.  Indeed, the 
identification procedure of the effective law shows that 
displacement time-dependence is determined, mostly, 
not by material viscosity, but by crack propagation 
[Ferretti and Di Leo (2008)]. 
In conclusion, the effective law is not affected by some 
of the incongruities, such as size effect, that burden the 
σ ε−  law, which should be constitutive, that is, only 
depending on the material.  The constancy of Poisson’s 
ratio also leads us to conclude that the eff effσ ε−  law is 
more representative of the constitutive behavior than 
the σ ε−  law, since even Poisson’s ratio itself should 
be dependent on the material only.  Nevertheless, one 
further point must be discussed before the effective law 
can be adopted as a constitutive law useful in numerical 
analyses, specifically, is the effective law suitable for 
modeling nonlocal effects?  The question arises from 
the observation that the effective law is a local material 
law, with the stress at a given point depending exclu-
sively on the current values, and also on the previous 
history, of deformation at that point only.  Since re-
search carried out over many years has shown that the 
classical local continuum concept, leading to constitu-
tive models falling within the category of simple non-
polar materials [Noll (1972)], does not seem to be ade-
quate for modeling heterogeneous materials [Duhem 
(1893); Rayleigh (1918); Oseen (1933); Chandrasekhar 
(1950); Hodgkin (1964); Krumhansl (1965); Rogula 
(1965); Eringen (1966); Kunin (1966); Kröner (1968); 
Edelen, Green, and Laws (1971); Eringen (1972); Erin-
gen, and Edelen (1972); Eringen, and Kim (1974); Er-
ingen, Speziale, and Kim (1977); Eringen (1981); 
Rogula (1982); Eringen (1983); Bažant, Belytschko, 
and Chang (1984); Bažant, and Chang (1984); Pijaud-
ier-Cabot, and Bažant (1987); Bažant, and Lin (1988a); 
Bažant, and Lin (1988b); Bažant, and Pijaudier-Cabot 
(1988); Saouridis (1988); Bažant, and Pijaudier-Cabot 
(1989); Bažant, and Ožbolt (1990); Bažant, Tabbara, 
Kazemi, and Pijaudier-Cabot (1990); Bažant (1991); 
Saouridis, and Mazars (1992); Schlangen, and van Mier 
(1992); Planas, Elices, and Guinea (1993); Schlangen 
(1993); Bažant (1994); Huerta, and Pijaudier-Cabot 
(1994); Leblond, Perrin, and Devaux (1994); Nilsson 
(1994); Vermeer, and Brinkgreve (1994); Jirásek, and 
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Bažant (1995); Tvergaard, and Needleman (1995); 
Drugan, and Willis (1996); Ožbolt, and Bažant (1996); 
Planas, Guinea, and Elices (1996); Strömberg, and Ris-
tinmaa (1996); Nilsson (1997); van Mier (1997); 
Jirásek (1998a); Jirásek (1998b); Jirásek, and 
Zimmermann (1998); Needleman, and Tvergaard 
(1998); Borino, Fuschi, and Polizzotto (1999); Jirásek 
(1999); Chen, Wu, and Belytschko (2000); Hu, and 
Wittmann (2000); Jirásek, and Bažant (2001); Gao, and 
Huang (2001); Luciano, and Willis (2001); Bažant, and 
Jirásek (2002); Jirásek, and Patzák (2002); Jirásek, and 
Rolshoven (2002)], it follows that the answer may seem 
negative.  This is not the case, since it has been shown 
[Ferretti (2005)] that nonlocal constitutive laws be-
tween stress and strain tensors are not strictly needed to 
construct a material model.  They are required only if a 
differential formulation is used, since differential opera-
tors are local.  The effective law is suitable for model-
ing nonlocal effects if used with a formulation which is 
nonlocal in itself, such as the Cell Method (CM) [Fer-
retti (2005)]. 
In order to use the effective law in modeling, the sepa-
ration between structural and material behavior must 
also be taken into account in numerical analyses.  That 
is, we must allow the domain to upload when a crack 
propagation condition is reached, causing the resistant 
structure to modify during modeling.  In Ferretti (2003), 
a CM code for modeling crack propagation in concrete 
cylinders in uniaxial compression was presented for the 
first time, in which a nodal relaxation technique was 
used for uploading the domain.  The cylinders have dif-
ferent ( )2H R  ratios, as did the cylinders used in Fer-
retti and Di Leo (2003).  It was found that, using the 
same effective law for all cylinders, different N u−  
curves were obtained for different ( )2H R  ratios and 
all the N u−  curves are softening curves.  The numeri-
cal results fit well with the experimental results of Fer-
retti and Di Leo (2003).  In conclusion, it was numeri-
cally verified that the propagation of a macro-crack in 
compressed cylinders is the single factor responsible for 
the softening behavior in the N u−  curves when the 
material is not a strain-softening material.  The different 
shape of the N u−  curves in function of the ( )2H R  
ratio is explained once again by the propagation of the 
macro-crack, since the crack propagation speed depends 
on the ( )2H R  ratio, causing a faster decrement of the 

resistant area for higher ( )2H R  ratios. 

The dependence of the shape of the N u−  curves on 
crack propagation only has also been numerically veri-
fied in Ferretti and Di Leo (2003) and Ferretti (2005), 
where N u−  curves are provided for cylinders wrapped 
in a differing number of FRP sheets.  Even in this case, 
the same effective law was used for all cylinders, and 
different N u−  curves were obtained for the different 
numbers of FRP sheets.  This can be explained by the 
fact that crack propagation speed depends upon the 
number of sheets, with a slower decrement of the resis-
tant area occurring for a higher number of sheets. 
The effective law has also been used to model crack 
propagation in four-point bending concrete beams [Fer-
retti (2004d)], pullout testing in concrete panels [Fer-
retti (2004e)], shear testing in masonry walls [Ferretti, 
Casadio, and Di Leo (2008)], and tensioned concrete 
plates [Ferretti (2009)], in all cases giving the correct 
crack propagation path and useful information on stress 
distribution during propagation.  In particular, in Fer-
retti, Casadio, and Di Leo (2008), the CM code was 
modified so that multiple-cracks propagation can be 
modeled. 
In the following sections, the main findings of the re-
search into the effective law are summarized clearly, in 
order to give a thorough explanation of the experimen-
tal program and related data processing, presented here, 
to readers with no previous experience of this identifi-
cation technique. 

1.1 Discussion on the analytical well-posedness of 
strain-softening 

Let us consider the identification procedure of the ef-
fective stress using experimental data acquired for con-
crete cylindrical specimens in uniaxial compression.  
The compression tests are performed in displacement 
control, by increasing the relative displacement between 
the platens of the testing machine, uΔ , monotonically.  
Of the two platens of the compression testing machine, 
the upper one is attached to a screw, which passes 
through the cross-head plate, and can be raised or low-
ered to adjust for initial clearance, while the lower 
platen is movable.  Since loading takes place through 
the upward movement of the lower platen, while the 
upper platen does not move, the relative displacement 

uΔ  is equal to the upward displacement of the lower 
platen, u : 

u uΔ = . (1) 



The acquired data are the impressed displacement given 
by the lower platen, u , and the subsequent external 
load, ( )N N u= , measured by the load measuring de-
vice attached to the upper platen.  As is well known, 
plotting the N u−  relationship shows, at first, an as-
cending branch, then a peak and a descending branch, 
also called softening branch (Fig. 3). 
In the assumption that the specimen used for uniaxial 
compression testing modifies its resistant structure dur-
ing the test, due to crack propagation, the progressive 
normalized decrement of area can be estimated at each 
test step as: 

( ) ( ) ( )1n res res

n n

A A u A u
D D u

A A
−

= = = − , (2) 

where nA  is the nominal area (Fig. 3) and resA  is the 
resistant area, which varies with the test step.  D varies 
from 0 (test beginning, when the crack has not yet enu-
cleated and res nA A= ) to 1 (specimen crushing) and 
gives a measure of how much the crack propagation has 
affected the resistant area. 
In accordance with the scalar theory of Fracture Me-
chanics with Damage, D  will be the damage parameter 
in the following.  The analogy with the operation proc-
ess of Fracture Mechanics with Damage is limited to 
Eq. (2).  Indeed, in Fracture Mechanics with Damage, 
D  has an analytic formulation and is considered to be 
uniformly distributed on nA .  Here, D  is experimen-
tally evaluated and all the damage is considered to be 
localized within the volume of incoherent material. 
Using the last equality in Eq. (2), the resistant area can 
be expressed in function of the damage parameter as: 

( ) ( )( )1res res nA A u A D u= = − . (3) 

The effective stress, effσ , is defined to be the average 

stress acting on the resistant area, resA : 

( ) ( )
( )eff eff

res

N u
u

A u
σ σ= = . (4) 

Since, to conserve equilibrium along the load direction, 
we can write: 

( ) ( ) nN u u Aσ= , (5) 

where σ  is the average stress on the nominal area nA , 
the effective stress in Eq. (4) can be also expressed as: 

( ) ( ) ( )n
eff eff

res

Au u
A u

σ σ σ= = . (6) 

By defining the average strain along the load direction, 
ε , as the specimen axial contraction, HΔ , divided by 
the gauge length, H  (specimen height, see Fig. 3): 

H u u
H H H

ε Δ Δ
= = = , (7) 

it is possible to express the effective stress in the vari-
able ε , as ( )eff effσ σ ε= , and plot it in the effσ ε−  
plane.  Obviously, in our assumption of a modifying re-
sistant structure for crack propagation, ε  has no physi-
cal meaning and, strictly speaking, it could not be called 
the average strain either.  As a matter of fact, Eq. (7) 
gives a strain for the continuum theory only.  Here, ε  
is a normalized (relative) displacement, which origi-
nates, in part, by material strain and, in part, by a crack 
opening.  This position alone represents the main dif-
ference between the identification procedure of the ef-
fective law and the traditional identification procedure.  
The estimation of the material strain, called the effec-
tive strain, effε , will be shown in §1.2 according to the 
identification procedure of the effective law. 
The question that we want answer in this section is 
whether or not the sign of the first derivative of the 
function ( )effσ ε  is known in the effσ ε−  plane.  That 
is, we want know whether or not it is possible to find 
analytically whether the effσ ε−  relationship also has a 
softening branch.  In order to answer this question, we 
have rewritten Eq.(4) using the change of variable - 
from u  to ε  - expressed in Eq. (7) by the equality be-
tween the first and the last terms: 

( ) ( )
( )eff eff

res

N
A

ε
σ σ ε

ε
= = . (8) 

We then find the first derivative of Eq. (8), in the vari-
able ε : 

( )
( ) ( ) ( ) ( )

( )2

res
res

eff

res

dN dA
A Nd d d

d A

ε ε
ε εσ ε ε ε

ε ε

−
= . (9) 

If we define ˆ û Hε =  to be the value of the average 
strain, ε , giving the maximum load (Fig. 3), then: 

( ) maxˆ
N N

ε ε
ε

=
= , (10) 



and we can now observe that: 
• N  is monotonically non-decreasing until the peak 

of the relationship N ε− : 

( ) 0
dN

d
ε

ε
≥           ˆ0 ε ε≤ ≤ , (11) 

and monotonically strictly non-increasing beyond 
the peak: 

( )
0

dN
d

ε
ε

<           ˆε ε> , (12) 

• since resA  can never increase during the test, while 
it decreases at each crack propagation, resA  is 
monotonically non-increasing in all its domain of 
definition: 

( ) 0resdA
d

ε
ε

≤           ε∀ , (13) 

and can have a zero tangent only in the neighbor-
hood of the origin, where the material is in its lin-
ear-elastic state: 

( )
0

0resdA
d

ε

ε
ε

=

= , (14) 

( )
ˆ

0resdA
d

ε ε

ε
ε

=

< . (15) 

From Eqs. (11), (13) and (15), it immediately follows 
that the numerator in Eq. (9) is strictly positive for 

ˆ0 ε ε≤ ≤ .  Consequently, the sign of effd dσ ε  is also 
strictly positive for ˆ0 ε ε≤ ≤ : 

( )
0effd

d
σ ε

ε
>           ˆ0 ε ε≤ ≤ . (16) 

In particular, for ˆε ε= , Eq. (9) assumes the value: 

( ) ( )

( )

( )
ˆ

2ˆ
ˆ ˆ

0

res

eff

res

dA
dd

N
d A

ε ε
ε ε

ε ε ε ε

ε
εσ ε

ε
ε ε

=
=

= =

= − > , (17) 

where the strict inequality comes from Eq. (15). 
Eq. (17) implies the following important result: a point 
with a strictly positive tangent in the effσ ε−  relation-
ship corresponds to the peak in the N u−  relationship.  

Thus, the peak of the N u−  relationship does not gen-
erate a peak in the effσ ε−  relationship.  This is a sig-
nificant result, since it was obtained without having in-
troduced any other assumptions about the plot of the 
law describing the decrement of resA , except the physi-
cally justifiable condition of a non zero tangent in cor-
respondence of the maximum load.  The same result ob-
tained for the sign of the tangent can be transposed to 
the eff effσ ε−  relationship, since substituting ε  with 

effε  is simply another change of variable. 

As far as the sign of Eq. (9) for ˆε ε>  is concerned, this 
depends on the value of ρ , the ratio between the two 
terms in the numerator of Eq. (9): 

( ) ( )

( )( )

res

res

dN A
d

dAN
d

ε ε
ερ

εε
ε

= . (18) 

The result is: 

( )
0 1 0effd

d
σ ε

ρ
ε

≤ ≤ ⇒ ≥  ˆε ε> ; (19′) 

( )
1 0effd

d
σ ε

ρ
ε

> ⇒ <  ˆε ε> . (19″) 

One can also examine the sign for ˆε ε>  of the first de-
rivative of q , which is defined as the ratio between the 
normalized resistant area, res nA A , and the normalized 
load, maxN N : 

( )

( )

( ) ( )
max

max

res

n

eff

A
Aq

N
N

ε
σ

ε
ε σ ε

= = . (20) 

The derivative gives: 

( )
( )

( )
( ) ( ) ( ) ( )

 

max 2

max 2         .

eff

eff

res
res

d
dq d

d

dN dA
A N

d d
N

σ ε
ε εσ

ε σ ε

ε ε
ε ε

ε εσ

= − =

−
= −

 (21) 

From Eqs. (21) and (18), it can be observed that the 
sign of dq dε  is determined by ρ : 



( )0 1 0
dq

d
ε

ρ
ε

≤ ≤ ⇒ ≤  ˆε ε> ; (22') 

( )
1 0

dq
d

ε
ρ

ε
> ⇒ >  ˆε ε> . (22") 

On the other hand, the sign of dq dε  follows directly 
from Eqs. (19) and the first equality in Eq. (21), which 
states that dq dε  and effd dσ ε  have opposite signs 
for all ε . 
Combining Eqs. (19) and (22) and keeping in mind the 
meaning of q , expressed by Eq. (20), we can state that 
the slope for ˆε ε>  of the effσ ε−  plot is positive when 
the normalized resistant area decreases faster than the 
normalized load: 

( ) ( )
0 0effddq

d d
σ εε

ε ε
≤ ⇒ ≥  ˆε ε> , (23) 

while it is negative when the normalized resistant area 
decreases slower than the normalized load: 

( ) ( )
0 0effddq

d d
σ εε

ε ε
> ⇒ <  ˆε ε> . (24) 

Thus, the existence of a strain-softening branch for 
ˆε ε>  depends on the law describing the resistant area, 

resA , or, which is the same as for Eq. (2), on the law de-
scribing the damage parameter, D . 
In conclusion, we have demonstrated that the sign of 

effd dσ ε  is strictly positive for ˆ0 ε ε≤ ≤  (Fig. 4), 
whereas it is only known when the law describing D  is 
known for ˆε ε> . 

N 

u

σ 

ε û

0effd
d
σ
ε

>

ˆ0 u u≤ ≤

maxN P
Q

 

Figure 4:  Results of the algebraic analysis on 
effd dσ ε  

In order to make it possible to discuss the slope of the 
effσ ε−  relationship also for the ˆε ε>  range, we have 

adopted a procedure for identifying D  experimentally, 
which will be shown in §1.2. 

1.2 The identification procedure of the effective law 

In order to evaluate ( )D D ε=  experimentally, two 
damage laws can be employed.  The first damage law, 

1D  [Daponte and Olivito (1989)], relates the damage 
parameter to the variation of the microseismic signal 
velocity, V , at the current test step: 

1
0

1 VD
V

= − , (25) 

where 0V  is the initial microseismic signal velocity. 

To evaluate the damage parameter in a uniaxial com-
pression test, the path along which the microseismic ve-
locity can be evaluated is one diameter of the middle 
cross-section (Fig. 5.a). 
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Figure 5:  a) Test set-up for the acquisition of 1D ; b) 
Evaluation of dW  for the acquisition of 2D  

The second damage law, 2D  [Ferretti and Di Leo 
(2003); Ferretti (2004b)], relates the damage parameter 
to the dissipated energy at the current test step, dW  
(Fig. 5.b), and the total dissipated energy, ,d tW : 

2
,

d

d t

WD
W

= . (26) 

The experimental laws describing 1D  and 2D  are very 
similar.  These, together with Eqs. (3) and (4), allow us 
to identify the effective stress, effσ , as: 

1 1
1 1eff

n

N
A D D

σ σ= =
− −

. (27) 

The effective strain effε  is identified by considering that 
only the conservative forces act in a generic unloading-
reloading cycle.  Consequently, the failure process stops 
in a generic unloading-reloading cycle, which is thereby 
characterized by constant values of resA .  In this case, 



the unloading-reloading behavior is governed by the 
material properties only.  The average slope of the 
unloading-reloading cycle in the eff effσ ε−  curve, 

tan effα  (Fig. 6), is therefore equal to the average slope 
of the unloading-reloading cycle in the σ ε−  curve, 
tanα , multiplied by the factor n resA A , where resA  is 
the resistant area at the unloading point: 

tan tann
eff

res

A
A

α α= . (28) 

 

Figure 6:  Identification of effε  starting from the known 
values of effσ  (Eqs. (4), (3) and (7)) and effα  

In the eff effσ ε−  curve, the average slope of the unload-
ing-reloading cycle represents the effective stiffness at 
the unloading point.  We assume that the effective stiff-
ness at the unloading point is equal to sE , the secant 
stiffness in the effective law: 

tans effE α= . (29) 

Consequently, the generic point eff effσ ε−  results from 

the intersection of the two lines effσ σ=  and sEσ ε=  
(Fig. 6).  Imposing equality between the two effective 
stiffness (Eq. (29)), is equivalent to assuming that the 
effective behavior is elastic, and the (effective) strain is 
fully recovered after unloading. 

1.3 Experimental validation of the identification pro-
cedure 

For plotting purposes, note that Eq. (3) may be put in 
the form: 

1res

n

A D
A

+ = , (30) 

which means that the normalized resistant area, 
res nA A , is given by the complement to 1 of the damage 

parameter, D , and the damage parameter is given by 
the complement to 1 of the normalized resistant area.  
Hence, the same plot provides both the normalized re-
sistant area and the damage parameter, for any given 
value of ε . 
Fig. 7 shows the 2D  damage laws (values to be read on 
the right vertical axis) and related normalized resistant 
area laws (values to be read on the left vertical axis) for 
concrete cylinders with H R  ratios varying from 3 to 
8.  From Fig. 7 we can appreciate that the resistant area 
starts to decrease soon after the beginning of the testing 
and the damage process characterizes the entire dura-
tion of the test.  The plots in Fig. 7 are size-effect sensi-
tive.  Indeed, the higher the H R  ratio, the higher is 

2D  and the lower is resA  for any given value of ε .  For 
each plot, a flex point can be identified for a value of ε  
which approximately corresponds to ε̂ , defined in Eq. 
(10).  Thus, the slope of the resA  law (and, conse-
quently, of the 2D  law) reaches its maximum absolute 
value for ˆε ε= .  This validates the assumption of a non 
zero tangent of resA  (and, consequently, of 2D ) for 

ˆε ε= , an assumption which is at the basis of the ana-
lytical findings about the existence of strain-softening 
for ˆ0 ε ε≤ ≤  (§1.1): 

( )
ˆ

0resdA
d

ε ε

ε
ε

=

≠ ;          ( )
ˆ

0
dD

d
ε ε

ε
ε

=

≠ . (31) 
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Figure 7:  Normalized resistant area and 2D  damage 

law for variable slenderness 

As far as the existence of strain-softening for ˆε ε>  is 
concerned, the experimental evaluation of the damage 
parameter allows us to plot the function q , defined by 
Eq. (20).  In Fig. 8, q  is plotted in function of the dis-



placement u .  The plot of the function ( )q ε  is homo-
thetic to the relationship in Fig. 8.  Since q  turns out to 
be a positive-valued, monotone, strictly non-increasing 
function for ˆu u>  and, consequently, for ˆε ε> , it fol-
lows that: 

( ) 0
dq

d
ε

ε
<  ˆε ε> . (32) 

Eqs. (23) and (32) allow us to conclude that the effec-
tive law, eff effσ ε− , is not strain-softening either in the 

ˆε ε>  range: 

( )
0effd

d
σ ε

ε
>  ˆε ε> . (33) 
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Figure 8:  Scale factor between the percentage resistant 

area and normalized load laws 
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Figure 9:  Size effect for the load-displacement dia-

grams 

The load–displacement diagrams, N u− , for the 
specimens with 3 8H R = ÷  are shown in Fig. 9.  They 
are clearly size-effect sensitive, with the tangent for 

0u =  and the maximum load both decreasing with the 
increasing of the H R  ratio.  The σ ε−  diagrams also 
turn out to be size-effect sensitive (Fig. 10), making it 
impossible to identify a unique law for the material. 
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Figure 10:  Size effect for the average stress-average 
strain diagrams 
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Figure 11:  Interpolating law of the average slope of 
the unloading-reloading cycles 

Fig. 11 shows how the unloading law in the σ ε−  
plane is clearly independent of the slenderness ratio of 
the specimen.  This result supports the assumption 
whereby all parameters characterizing the unloading-
reloading cycles, included their average slope, are 
linked to proprieties of the material and do not depend 
upon the failure process affecting resA .  Therefore, this 
result can be considered as an indirect validation of the 
assumption whereby resA  does not change during the 
unloading-reloading cycles, which is at the basis of the 
identification procedure of the effective strain (§1.2).  
On the other hand, even Fig. 7 supports the same as-
sumption, since the ratio res nA A  never decreases dur-
ing an unloading-reloading cycle, on the contrary, 

res nA A  sometimes increases during unloading, due to 
the partial re-closure of the macro-crack and the subse-



quent possibility of transferring load between the two 
rough surfaces of the re-closed macro-crack.  This leads 
a part of material isolated by the propagation of the 
macro-crack to interact with the inner resistant core un-
til the unloading load is recovered, after reloading. 
The eff effσ ε−  relationships obtained for the six geome-
tries fall within the dispersion range in Fig. 12.  The av-
erage curve in Fig. 12 is monotonically non-decreasing, 
as was expected from the preventive analytical analysis 
(Eq. (33)).  It is worth noting that the monotonicity of 
the effective law was not assumed a-priori, but was ob-
tained directly from experimental data, scaling the ap-
plied load by the experimentally evaluated resistant 
area. 
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Figure 12:  eff effσ ε−  dispersion range for variable slen-

derness and average curve 

As previously anticipated, one of the main conse-
quences of the model of the inner resistant core con-
cerns the behavior of Poisson’s ratio and volumetric 
strain during the uniaxial compression test.  As a matter 
of fact, if the propagation of the macro-crack isolates 
the outer part of the specimen causing it to lose its ca-
pability of carrying load, while the inner core (which is 
biconic in cylinders) represents the resistant structure of 
the specimen, it seems more reasonable to acquire 
strains within the inner resistant core instead of on the 
surface of the specimen.  The acquisition of a strain 
along the circumference of the middle cross-section (by 
means of the strain-gauge in Fig. 13, for example), cε , 
has often been used in order to evaluate the radial 
strain, rε , since rε  and cε  have the same value in cyl-
inders: 

( )22
2 2r c

RR R crf
R R R crf

ππε ε
π π

ΔΔ Δ Δ
= = = = = , (34) 

where crf  stands for “circumference”. 
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Figure 13:  Strain-gauge for circumferential strain ac-
quisition and FOS sensor for radial strain acquisition 

The value of rε  evaluated by means of Eq. (34), may 
then be used for estimating Poisson’s ratio, ν , defined 
as: 

r

l

εν
ε

= − , (35) 

where lε  is the longitudinal strain given by Eq. (7): 

l
H

H
ε ε Δ

= = . (36) 

This gives rise to the r lε ε  plot in Fig. 14, giving a 
Poisson’s ratio that rapidly reaches non-physical values 
greater than 0.5 .  The reason for this is that Eq. (34) 
does not provide a strain, since the last equality is only 
valid until the crack starts to propagate.  As the crack 
propagates throughout the test (see damage laws in Fig. 
7), the variation of the circumference length is due, in 
part, to material deformation and, in part, to the space 
between the two surfaces of the opening crack.  Thus, 
Eq. (34) cannot be employed to evaluate Poisson’s ra-
tio. 
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Figure 14:  Traditional and identified r lε ε  ratios 

By acquiring the radial strain inside the inner core (us-
ing the FOS sensor in Fig. 13, for example) we find a 



r lε ε  ratio almost independent of lε .  This means that 
Poisson’s ratio is almost independent of the loading 
step, which is physically expectable since Poisson’s ra-
tio is a constitutive property, that is, a property related 
to the material only. 
The volumetric strain, ϑε , is the ratio of the change in 
the volume of a body, which occurs when the body is 
placed under pressure, to the original volume of the 
body: 

V
Vϑε Δ

= . (37) 

ϑε  is equal to the first invariant of strain, 1I ε , which is 
the trace of the strain tensor: 

1 1 2 3I ε ε ε ε= + + , (38) 

where 1ε , 2ε , and 3ε  are the principal strains.  In cylin-
drical specimens, the principal strains are equal to lε , 

rε , and cε , with r cε ε= .  Thus, in cylinders ϑε  is 
bonded to lε  and rε  as follows: 

1 2l r c l rIϑ εε ε ε ε ε ε= = + + = + . (39) 

Assuming rε  given by Eq. (34), the volumetric curve, 
N ϑε− , proves to be mostly in the positive field (Fig. 
15).  This involves the increase in volume of the speci-
men under pressure and is known as dilatancy.  On the 
contrary, using the radial strain acquired internally to 
the resistant core, the volumetric curve is in the nega-
tive field (Fig. 15).  Hence, it appears that there is no 
real increase in the volume of a concrete solid when the 
solid is placed under pressure. 
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Figure 15:  Traditional and identified volume curves 

1.4 Numerical validation of the identification proce-
dure 

We have already discussed (§1) the possibility of using 
a local law, such as the effective law, for modeling 
nonlocal effects.  Here, we will show some numerical 
results given by a Cell Method (CM) code using the ef-
fective law as constitutive law. 
Fig. 16 shows the crack path identified by the model for 
a uniaxial compressed cylindrical specimen, where the 
direction of propagation is computed step by step, tak-
ing into account the modification of the stress field in-
duced by the previous crack propagation.  The average 
slope of the crack path in Fig. 16 is approximately 70° 
and reflects the values observed experimentally (Fig. 1) 
in the cylinders used for identifying the effective law to 
be applied for the modeling (Fig. 12). 

Delaunay
Voronoi 

N 

N 
Initiation
point  

Figure 16:  Crack path for the bottom-left quarter of 
the longitudinal section 

The code operates in displacement control, identifying 
the crack length for each increment of relative dis-
placement given between the platens of the test ma-
chine and computing the external load.  The crack 
length and the external load at each displacement in-
crement depend upon the H R  ratio.  The numerical 
σ ε−  curves given in Fig. 17 for the 6 tested geome-
tries accord well with the experimental values (Fig. 10).  
In particular, it is worth noting how the σ ε−  curves 
are strain-softening even if the constitutive law being 



used, the effective law in Fig. 12, is monotonically non-
decreasing.  This happens because the crack propaga-
tion causes a part of the longitudinal section to unload, 
reducing the resistant area at each propagation, and, as a 
consequence, a smaller resistant area involves a smaller 
carried load for any given relative displacement be-
tween the platens of the test machine.  Fig. 18 shows 
the axial stress field on the longitudinal section for a 
short crack propagation (the crack tip is located at about 
10 cm  from the lower platen).  Two effects on the 
stress field are clearly visible in Fig. 18: the first is 
given by the constraint provided by the lower platen, 
since we have assumed no sliding (perfect adherence) 
between the specimen and the platen itself, and the sec-
ond is the unloading of the material lying between the 
crack and the external surface, which also causes 
unloading of the above material, significantly decreas-
ing the resistant area of the specimen. 
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Figure 17:  Numerically evaluated size-effect on aver-

age stress-average strain diagrams 

 
Figure 18:  Axial stress analysis on the longitudinal 

section for plain concrete 

 
Figure 19:  Axial stress analysis on the longitudinal 

section for wrapped specimen 
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Figure 20:  Numerical load-displacement curves for 

unwrapped and CFRP wrapped specimens 

A further numerical result showing how the local effec-
tive law may provide nonlocal analysis concerns the 
modeling of the compression test for concrete cylinders 
wrapped with FRP sheets.  The stress field in Fig. 19 
shows how the external wrapping counteracts the stress 
unloading induced by crack propagation.  In particular, 
the comparison between Figs. 18 and 19 allows a direct 
estimation of how much the external wrapping modifies 
the stress field along the longitudinal section, since the 
crack length is the same in both figures.  This results in 
a greater resistant area for FRP wrapped cylinders, for 
the same crack length.  As a consequence, the differ-
ence between material and specimen behavior is lower, 
that is, the difference between the plot of the eff effσ ε−  
and N u−  laws is lower.  This analysis leads to the 
conclusion that the well-known disappearance of the 
softening branch in the N u−  laws of FRP wrapped 



specimens should not be associated with the high 
Young’s modulus for the wrapping, as usually assumed, 
but with a resistant area that is closer to the nominal 
area than in plain concrete: for a number of FRP sheets 
sufficient to make the difference between nA  and resA  
negligible, the specimen behavior proves to be mono-
tonically non-decreasing, as does the effective law. 
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Figure 21:  Numerical and experimental results for the 

unwrapped specimens 
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Figure 22:  Numerical and experimental results for the 

one-layer CFRP wrapped specimens 
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Figure 23:  Numerical and experimental results for the 

three-layer CFRP wrapped specimens 

The numerical N u−  curves given by varying the 
number of FRP sheets only (without modifying the con-
stitutive law, which is the effective law) are shown in 
Fig. 20.  They are compared with the experimental 
N u−  curves in Figs. 21-23. 

 

Figure 24:  Influence of specimen shape on the σ ε−  
curve for marble loaded in uniaxial compression [Hud-

son Brown and Fairhurst (1971)] 



The different speed of the resA  decrement during the 
compression test could also explain the shape-effect in 
brittle materials (see Fig. 24 for marble), which in-
volves no softening branch in the N u−  (σ ε− ) curves 
for small slenderness ratios, ( )2H R , and a softening 
becoming increasingly prominent as the ( )2H R  ratio 
increases.  Actually, as initially pointed out by Hudson 
Brown and Fairhurst (1971), smaller ( )2H R  ratios 
involves a smaller decrement of resA  and, consequently, 
a σ ε−  curve closer to the monotonically non-
decreasing eff effσ ε−  curve (see Figs. 25-26, where F is 

the external load N  and 0A  stands for nA , ( )A ε  for 

resA , 0σ  for σ , TRUEσ  for effσ ). 

Fig. 17, previously discussed, also shows how the CM 
code is able to capture the shape-effect for a small 
variation range of the ( )2H R  ratio. 
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Figure 25:  Effect of stress definition on the shape of 

the stress-strain curve for large ( )2H R  ratio [Hudson 
Brown and Fairhurst (1971)] 
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Figure 26:  Effect of stress definition on the shape of 

the stress-strain curve for small ( )2H R  ratio [Hudson 
Brown and Fairhurst (1971)] 

2 Experimental program 

One peculiar aspect of the shape-effect is the different 
behavior, in terms of load-displacement diagrams, be-

tween cubic and cylindrical concrete specimens.  That 
is, the shape of the N u−  diagrams is different in cyl-
inders than in cubes.  Consequently, the shape of the 
σ ε−  diagrams is also different in cylinders than in 
cubes (Fig. 27).  In particular, as well known, the cylin-
der strength is between 5%  and 25%  less than the 
cube strength, the percentage difference decreasing with 
an increase in the concrete strength.  Also, a decrease in 
either the size or the aspect ratio of specimens leads to a 
decrease in the ratio of standard cube strength to that of 
other specimens. 
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Figure 27:  Shape-effect for cubic and cylindrical con-

crete specimens 

Usually, the concrete technology tests the conformity of 
compressive strength on cubes with a size of 150 mm , 
after 28 days, which were mix cured (first 7 days under 
water, remaining 21 days exposed to air).  Then, a fac-
tor of 0.83  (BS 1881: Part 120) is introduced to con-
vert cube to cylinder strength for normal strength con-
crete.  According to the concrete standard MSZ EN 
206-1:2002, the conversion factor between the strength 
of cubic specimens with a size of 150 mm  and the 
strength of cylindrical specimens with a 150 mm  di-
ameter and 300 mm  height must be changed into 
0.76 0.97  when the specimens are wet cured. 

Since the compressive strength is calculated by dividing 
the maximum load by the nominal area, nA , the idea at 
the basis of the present experimentation is to verify 
whether or not the difference between cylinder and 
cube strength vanishes when the resistant area, resA , is 
substituted for nA .  This verification of the actual con-
stitutive nature of the effective law was carried out for 
two different mixtures, one of plain concrete and the 
other of rubberized concrete [Ferretti and Bignozzi 
(2011); Ferretti and Bignozzi (2012)], obtained by sub-



stituting a part of the fine aggregate with rubber scraps 
(Fig. 28) produced by grinding discarded tires (PFU 
scraps).  The composition of the PFU scraps used in the 
experimentation is shown in Tab. 1. 

 

Figure 28:  Gommamica®Powerfill ECO (SBR Sty-
rene Butadiene Rubber) rubber coarse aggregate, com-

mercialized by Elastrade Srl 

Table 1:  Composition of the PFU scraps 

COMPONENTS Weight%

Rubber (hydrocarbon) 50-55 

Lampblack 26-30 

Acetone 9-13 

Ashes 6-8 

Sulfur 1-3 

 

Usually, concrete rubberization is used as a technique 
for recycling waste tires, joining all the previous tech-
niques for recycling waste tires, thereby giving rise to a 
wide range of non-structural elements.  Recently, con-
crete rubberization was shown to be able to produce a 
mixture that could also be employed for structural pur-
poses [Ferretti and Bignozzi (2012); Ferretti (2012, 
submitted)]. 

2.1 Mixtures and specimens preparation 

Experimentation was carried out at the LISG-RM labo-
ratory of the Engineering Faculty of the University of 
Bologna, Department of Civil, Environmental and Ma-
terials Engineering (DICAM). 
The two concrete mixtures used in the experimentation 
share the same type of binder (Portland II AL 45.5R 
Micronmineral), alluvial coarse aggregates (8 15 mm− ) 

and fine aggregates (sand of 0 5 mm−  and River Po 
sand of 0 2 mm− ).  In addition, a 1 2.4 mm−  rubber 
aggregate was used for the rubberized mixture (Fig. 
28). 

Table 2:  Weight composition and W C  ratio of Mix-
ture 1 

COMPONENTS 3kg m  Weight%

River Po sand 124.0  5.4

Sand 725.5  31.3

Coarse aggregates 916.2  39.6

Cement 359.2  15.5

Water 188.7  8.1

Admixture 2.4  0.1

Total 2316.0  100.0
 

W C 0.52  
 

Table 3:  Weight composition and W C  ratio of Mix-
ture 2 

COMPONENTS 3kg m  Weight%

River Po sand 130.7  6.6

Sand 493.8  24.7

Coarse aggregates 794.1  39.8

PFU scraps 87.7  4.4

Cement 328.0  16.4

Water 159.8  8.0

Admixture 2.6  0.1

Total 1996.7  100.0
 

W C 0.48  

 

The two mixtures were designed to reach super fluid 
consistency, class S5 consistency (Italian standards UNI 
EN 206-1:2006 and UNI 11104:2004).  Since a consid-
erable amount of water is required to reach super fluid 
consistency, leading to a decrease in strength and resis-
tance to frost and aggressive environments in hardened 



concrete and to an increased danger of segregation and 
bleeding, we used a polyacrylic superplasticizer admix-
ture (Axim Creactive LX fluxing agent) to ensure that 
the quantity of water utilized was not excessive. 
In this paper, the plain and the rubberized mixture will 
be called Mixture 1 and Mixture 2, respectively.  The 
compositions of the two mixtures and their wa-
ter/cement ratios, W C , are shown in Tabs. 2 and 3. 

Coarse and fine natural aggregates and rubber aggre-
gates (for Mixture 2 only) were fed into the concrete 
mixer in that order (Fig. 29) and mixed for 5 mins.  The 
cement was then added and mixed with aggregates for a 
further 2 mins.  Finally, 75% of the water and the ad-
mixture with the remaining water were added and 
mixed for 10 mins. 

 

Figure 29:  Laboratory batch mixer 

In order to derive qualitative information only about the 
sensitiveness of the effective law to the shape-effect, 
only two specimens were tested for each shape-mixture 
combination.  This meets the requirement whereby at 
least two standard-cured specimens made from the 
same concrete sample must be tested at the same age.  
In conclusion, the tested specimens are: two Mixture 1 
cubes, two Mixture 1 cylinders, two Mixture 2 cubes, 
and two Mixture 2 cylinders. 
A further requirement concerns the specimen’s dimen-
sions, as the cylinder’s diameter and the cube’s edge 
should be at least 3 times the nominal maximum size of 
the coarse aggregate used in the concrete.  Moreover, 
the ASTM Standard for a test cylindrical specimen is 
about 150 mm  ( 5.9 inches ) 300 mm×  (diameter) 
(11.8 inches ) (high).  Our cubic specimens are 150 mm  
square and the cylindrical specimens are 150 mm  in di-
ameter and 300 mm  in height. 

The concrete was poured into the cubic and cylindrical 
molds in layers approximately 5 cm  thick and tem-
pered properly (UNI EN 12350-1 and UNI EN 12390-
1) to eliminate any voids (Fig. 30).  Each layer was 
compacted using a tamping rod (hemispheric-nosed 
steel rod 16 mm  diameter and 60 cm  length, bullet 
pointed at lower end) and not less than 35 strokes per 
layer.  The rodding was distributed evenly over the 
specimen area, taking care to penetrate slightly into the 
previous layer when packing the second and/or follow-
ing layers. Finally, the top surface was leveled and 
smoothed over with a trowel. 

 

Figure 30:  Preparation of the specimens 

The test specimens were stored in moist air for 24 
hours.  After this period, the specimens were marked 
and removed from the molds.  According to the UNI 
EN 12390-2 specifications, all specimens prepared from 
each batch of concrete were cured under identical con-
ditions in a curing room (Fig. 31), before testing them 
at the same age. 

 

Figure 31:  Curing room under controlled thermo-
hygrometric conditions 



According to UNI EN 12390-1 specifications, to pro-
vide a uniform load distribution when testing, the ends 
of the specimen should be perpendicular to the cylinder 
axis, with a tolerance of 0.5° , and they should be plane 
to within 0.05 mm  ( 0.002 inches ).  To achieve this, 
we ground the ends of cylindrical specimens using an 
automatic grinder provided with a diamond cutting 
wheel with a 800 mm  diameter (Fig. 32), whilst grind-
ing was not necessary for the cubes, since these need 
only to be placed in the testing-machine in such a way 
to ensure that the load is applied to the opposite sides of 
the cube cast.  End-grinding allows compression testing 
to start immediately, without using capping materials.  
This eliminates the fumes and waiting time associated 
with capping the compound. 

 

Figure 32:  Automatic cylinder-end grinder 

 

Figure 33:  Analogical centesimal comparator and car-
penter’s square for checking planeness and perpendicu-

larity 

After grinding the cylinders, planeness was checked us-
ing a straight-edge and a feeler gauge with an acquisi-
tion range of between 0.025  and 0.254 mm  ( 0.001  

and 0.010 in. ) (see Fig. 33 for the feeler gauge, which 
is an analogical centesimal comparator), taking a mini-
mum of three measurements on different diameters, 
while the perpendicularity was checked using a carpen-
ter’s square with one arm longer than the specimen to 
be tested, the 90-degree angle accurate within 0.1 de-
gree, and the outer edges machined straight within 
0.025 mm  ( 0.001 ins.) along their entire length (Fig. 
33).  In both cases, the specimen end was positioned 
over a suitable metal plate (Fig. 33) placed on a bench 
and leveled up so that it was horizontal. 
Cubic and cylindrical specimens were instrumented 
with two probes for microseismic analysis (Fig. 34) and 
two LVDTs (Linear Variable Displacement Transduc-
ers), which are inductive displacement transducers (Fig. 
35). 
The microseismic probes were attached to the cleaned 
specimen surface, on the middle-height cross-section 
(Fig. 35), by means of hot glue (Fig. 34).  For the cubic 
specimens, the gluing points are the central points of 
the two sides of the cube cast opposite to the loaded 
sides.  Gluing the microseismic probes is a manual op-
eration that needs to be carried out very quickly, when 
the glue applied to the specimen is still liquid, so that 
the film of glue between the probes and the specimen is 
as thin as possible, to avoid the inclusion of air bubbles.  
This will ensure that a good microseismic signal can be 
received by the receiving sensor. 

 

Figure 34:  Hot glue gun loaded with a glue stick and 
probes for microseismic analysis: the red probe is the 

transmitting sensor, while the green probe is the 
receiving sensor 

The lower plate of the compression-testing machine is 
provided with concentric circular marks (Fig. 35), for 
centering purposes.  Cylindrical specimens were cen-
tered on the lower plate by using the centering marks.  



A circular metal plate 4 cm  (1.57 ins. ) thick and 
28.4 cm  (11.18 ins.) in diameter was placed on the 
lower plate (Fig. 36) when testing cubic specimens, in 
order to space the two plates as far as needed to locate 
the two LVDT transducers, since the height of the mag-
netic support of the two LVDT transducers is greater 
than the specimen size.  The flat surfaces of the circular 
plate are plane with a tolerance of not more than 

0.013 mm±  ( 0.0005 ins. ) and are parallel to within 
0.05 degrees.  The sides of the metal plate are engraved 
with eight equally spaced lines perpendicular to the flat 
ends, while the flat ends are engraved with concentric 
circular marks, in both cases for centering purposes.  
The metal plate was centered on the lower plate of the 

compression-testing machine by using the eight equis-
paced lines and the cubic specimens were centered us-
ing the centering marks engraved on the flat ends. 

 

Figure 35:  Positioning of the instrumented cylindrical 
specimen on the compression-testing machine 

 

Figure 36:  Compression-testing machine and acquisi-
tion apparatus 

The two LVDT transducers were fixed to a magnetic 
support (Fig. 35) and positioned along one diameter of 

the circular marks engraved on the lower plate (Fig. 
35), at an equal distance from the plate center.  The dis-
placement u  giving the average vertical strain ε  ac-
cording to Eq. (7) has been evaluated as the average 
displacement provided by the two LVDTs. 
The compression tests were performed in accordance to 
the technical standard UNI EN 12390-3.  The loading 
rate of the hydraulic machine was maintained in a range 
between 0.15  and 0.35 MPa s  ( 20  to 50 psi s ), as 
required, during the latter half of the loading phase. 

2.2 Results on plain concrete 

The acquired load displacement relationships, N u− , 
and the related average stress-average strain relation-
ships, σ ε− , for plain concrete are shown in Figs. 37 
and 38, respectively, where the compressive stresses 
and strains are positive. 
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Figure 37:  Load-displacement diagrams for Mixture 1 
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Figure 38:  Shape-effect on the average stress-average 

strain diagrams for Mixture 1 

As can be easily observed in both Figs. 37 and 38, 
specimens of the same geometry give almost the same 
results, while the shape-effect between cubic and cylin-



drical specimens is clearly evident, leading to a maxi-
mum load for cylinders that is 15%  lower than the 
maximum load for cubes (Fig. 38).  Moreover, the post-
peak branch of the σ ε−  relationships in cubic speci-
mens is very far from the post-peak branch in cylindri-
cal specimens. 
Applying the identification procedure of the effective 
law to the tested specimens, we found that the law de-
scribing the resistant area is sensitive to the specimen’s 
shape, leading to an resA  decrement faster in cylinders 
than in cubes (Fig. 39), with resA  computed, according 
to Eqs. (3) and (7), as: 

( ) ( )( )1res res nA A A Dε ε= = − , (40) 

where D  is the microseismic damage parameter de-
fined in Eq. (25).  Consequently, the ratio between cu-
bic effective strength and cylindrical effective strength, 

max maxeff effσ ε , is different to the ratio between cubic 

strength and cylindrical strength, max maxσ ε , where effσ  
is computed according to Eq. (8) and effε  is identified 
following the scheme set out in Fig. 6. 
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Figure 39:  Shape-effect on the decrement of resistant 

area for Mixture 1 

The effective laws identified for cubic and cylindrical 
specimens are shown in Fig. 40, together with the aver-
age effective law for the four plain concrete specimens.  
As can be seen in Fig. 40, no shape-effect seems to 
characterize the effective law for plain concrete, since 
the effective laws for cubic specimens intersect the ef-
fective laws for cylindrical specimens in a random 
manner.  Moreover, even in this experimentation, the 
softening branch disappears in the effective law and is 
substituted by two branches, the first approximately 
horizontal and the second hardening. 
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Figure 40:  Effective stress-effective strain diagrams 

for cubic and cylindrical specimens and average effec-
tive law for Mixture 1 

The apparent high difference between the average hard-
ening slopes of cubes and cylinders cannot be related to 
a shape-effect for high strains, due to the low number of 
tested specimens and the experimental uncertainties that 
characterize data acquisition in the last part of the com-
pression test.  Fig. 40 only allows us to state that a final 
almost linear hardening branch exists in the effective 
law of plain concrete, both for cubes and cylinders.  
The slope of this final branch must be investigated by 
means of further experimentation. 
For quantitative purposes, with the aim of deriving the 
effective characteristic strength for cubes, , cubck effσ , and 

cylinders, , cylck effσ , of course, many more than two 

compression tests are required for each shape (we esti-
mate 100 compression tests).  Nevertheless, Fig. 40 al-
lows us to assume that the effective laws for cubes and 
cylinders will intersect in a random manner in all cases.  
Consequently, taking as the effective characteristic 
strength, ,ck  effσ , the average effective strength in the 
approximated horizontal branch, to be on the safe side, 
we find: 

, , cub cylck eff ck effσ σ≅ . (41) 

2.3 Results on rubberized concrete 

The acquired load displacement relationships, N u− , 
for rubberized concrete are shown in Fig. 41.  From the 
comparison between Figs. 37 and 41, we can appreciate 
how rubber aggregates involve a decrement of maxi-
mum load in both the cubic and the cylindrical speci-
mens. 
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Figure 41:  Load-displacement diagrams for Mixture 2 
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Figure 42:  Shape-effect on the decrement of resistant 

area for Mixture 2 
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Figure 43:  Effective stress-effective strain diagrams 

for cubic and cylindrical specimens and average effec-
tive law for Mixture 2 

As for plain concrete, the N u−  relationships in Fig. 41 
lead, by changing the scale, to σ ε−  relationships that 
exhibit an evident shape-effect between cubic and cy-
lindrical specimens, resulting in a maximum load for 
cylinders that is 16%  lower than the maximum load for 
cubes.  Even in this case, however, the law describing 

resA  is sensitive to the specimen shape, providing an 

resA  decrement faster in cylinders than in cubes (Fig. 
42).  Once more, this leads to effective laws that do not 
exhibit any shape-effect (Fig. 43), with an effective 
characteristic strength for cubes, , cubck effσ , comparable 
to the effective characteristic strength for cylinders, 

, cylck effσ . 

3 New design relationships 

As can be seen in Figs. 40 and 43, if we neglect the 
hardening branches (to be on the safe side) the average 
effective laws resemble the design relationship between 
concrete stress, cσ , and concrete strain, cε , used in the 
semi-probabilistic limit state design method (Fig. 44). 

0cε  cuε  

cdf  

cε

cσ  

 
Figure 44:  Design stress-strain diagram for concrete 

The design relationship is composed of two branches, 
the first parabolic and the second horizontal.  Due to its 
shape, the design relationship is also called the parab-
ola-rectangle stress-strain diagram. 
In Fig. 44, the compressive stresses and strains are as-
sumed to be positive.  In particular, the strain at the end 
of the parabolic branch assumes the conventional value 

0cε , equal to: 

0
000 2cε = , (42) 

and the ultimate strain, cuε , is equal to: 

0
003.5cuε = . (43) 

Moreover, the cylindrical design strength cdf  is given 
by: 

0.85 ck
cd

c

f
f

γ
= . (44) 



where: 
• ckf  is the cylindrical characteristic strength, closer 

to the in-situ characteristic strength than the cubic 
characteristic strength, ckR , which is the experi-
mentally evaluated strength (on cubic specimens) 
and is related to ckf  by means of the conversion 
factor 0.83 : 

0.83ck ckf R=    for 2H
D

≥ . (45) 

ckR  is defined as the lower fractile of order p  (or 
the %p  lower fractile), that is, the cubic strength 
having the %p  probability of not being exceeded.  
It is derived from the experimental strengths, 

, 1,2,...,ciR i n= , given by the n  performed com-
pression tests on cubic specimens, as: 

ck cmR R kδ= − , (46) 

where, for 5p = , as usually assumed, k  is equal 
to: 

1.645k = , (47) 

and cmR  and δ  are, respectively, the average value: 

1

1 n

cm ci
i

R R
n =

= ∑ , (48) 

and the mean square error of the Gaussian distribu-
tion approximating the statistics of the experimental 
strength, cR , which is a discrete random variable, 
when the number of performed tests is very high 
( 100n ≥ ): 

( )2

1

1

n

ci cm
i

R R

n
δ =

−
=

−

∑
. (49) 

• The coefficient 0.85  takes into account the differ-
ence between the duration of the laboratory tests 
(short duration) and the application duration of real 
loads (long duration). 

• cγ  is a factor of safety, which, for ultimate loads, is 
equal to (DM 14/01/2008): 

1.5cγ = . (50) 

For 10 100n≤ < , the statistics of cR  can be still ap-
proximated to a Gaussian distribution, but the value of 

k  in Eq. (47) must be changed according to the number 
of performed tests and the desired degree of confidence. 
Tab. 4 presents the values of k  for 10 30n≤ ≤  and a 
confidence degree of 90%  [La Tegola (1977)]. 

Table 4:  Adjustment of the coefficient k  for 
10 30n≤ ≤  ( 90%  confidence degree) 

n  k  
10 2.14 
12 2.07 
14 2.02 
16 1.98 
18 1.95 
20 1.93 
23 1.90 
26 1.88 
30 1.85 

 

If a lower number of performed tests is available 
( 10n < ), the Gaussian distribution is no longer ade-
quate for describing the statistics of cR .  Consequently, 
Eq. (46) can no longer be employed for estimating ckR . 

Standards are more restrictive for the Italian regulations 
UNI EN 13791:2008 and DM 14/01/2008, and they 
state that the statistical approach must be abandoned 
whenever 15n < .  If this is the case, Eq. (46) must be 
substituted by the following relationship giving the in-
situ evaluation of ckR  when at least 3 tests have been 
performed on core samples: 

{ },
1 min ;  4

0.83ck cm c lowestR f k f= − + , (51) 

where all strengths are expressed in 2N mm , cmf  is the 
average cylindrical strength, ,c lowestf  is the lower cylin-

drical strength, and ( )k k n=  depends on n  according 
to Tab. 5. 

Table 5:  Relationship between k  and n , for 3 15n≤ <  
(UNI EN 13791:2008 and DM 14/01/2008) 

n  
k  

2N mm⎡ ⎤⎣ ⎦  

3-6 7 
7-9 6 

10-14 5 
 



For 15n ≥ , UNI EN 13791:2008 and DM 14/01/2008 
give the in-situ ckR , evaluated on the core samples, as: 

{ },
1 min ;  4

0.83ck cm c lowestR f k fδ= − + , (52) 

where the mean square error, δ , must satisfy the condi-
tion: 

22 N mmδ ≥ , (53) 

and, for 15n =  or in absence of further prescriptions: 

1.48k = . (54) 

By substituting Eqs. (45) and (50) into Eq. (44), we fi-
nally obtain the relationship between cdf  and ckR , for 

2H D ≥ : 

0.85 0.83 0.47
1.5

ck
cd ck

Rf R⋅
= = . (55) 

It is now worth remembering that the design relation-
ship in Fig. 44 has no experimental foundation: it is just 
a numerical relationship that has been shown to fit the 
structural behavior well if used in numerical modeling.  
The identification procedure of the effective law, allows 
us for the first time to derive an experimentally founded 
relationship that has the same shape of the design rela-
tionship. 
In this section, we will use the identified effective laws 
to verify the reliability of the design relationship for 
plain concrete.  The identified effective laws will be 
also used for proposing a design relationship for rubber-
ized concrete, for which no technical standard has yet 
been formulated. 

3.1 Plain concrete 

According to DM 14/01/2008, the parabolic branch of 
the design relationship is given by the second-order 
function: 

( )21000 250c cd c cfσ ε ε= −  0
002cε ≤ , (56) 

where cdf  is expressed by Eq. (44), whilst the second 
branch is given by the function: 

c cdfσ =  0 0
00 002 3.5cε< ≤ . (57) 

So that the design relationship of Mixture 1 can be plot-
ted, the value of ckR  must be known, in order to derive 

cdf  using Eq. (55).  Since 15n < , the statistical ap-

proach cannot be used and ckR  must be derived from 
Eq. (51).  The two cubic strengths, 1cR  and 2cR : 

2
1 54.06 cR N mm= , (58) 

2
2 58.08 cR N mm= , (59) 

can be converted into cylindrical strengths, 1cf  and 2cf  
(Tab. 6), by means of the conversion factor 0.83 , and 
used together with the cylindrical strengths 3cf  and 4cf  
of the two cylindrical specimens for evaluating cmf  and 

,c lowestf .  Since a total of 4n =  cylindrical strengths are 

therefore available (Tab. 6), the parameter k  given by 
Tab. 5 is: 

7k = . (60) 

Table 6:  Cylindrical strengths for the evaluation of 
ckR  

1cf  
2N mm⎡ ⎤⎣ ⎦  

2cf  
2N mm⎡ ⎤⎣ ⎦  

3cf  
2N mm⎡ ⎤⎣ ⎦  

4cf  
2N mm⎡ ⎤⎣ ⎦  

44.87  48.21  46.65  48.70  
 

The result is: 
248.32 ckR N mm= , (61) 

which, substituted into Eq. (55), provides a value of de-
sign cylindrical strength equal to: 

222.73 cdf N mm= . (62) 

As far as the opportunity of using Eq. (51) for the 
evaluation of ckR  is concerned, it must be pointed out 
that Eq. (51) establishes a relationship between the cu-
bic characteristic strength and the cylindrical strengths 
of core samples, while our experimentation was per-
formed on casted specimens.  It is well known that ex-
tracting a core sample damages the specimen to be 
tested, causing the compressive strength to decrease.  
According to DM 14/01/2008, the compressive strength 
measured on core samples must be increased by a factor 

TorF , called the torment factor, which is inversely pro-
portional to the compressive strength itself (Tab. 7). 
Now, since: 

{ }1 2min ,
40

1.02
c cf f

> , (63) 



we fall into the last case presented in Tab. 7: 

1.00TorF = , (64) 

and Eq. (51) can be used for casted specimens without 
including any corrective factor. 

Table 7:  Torment factor in function of the compressive 
strength measured on core samples 

,c carrotf  
2N mm⎡ ⎤⎣ ⎦  TorF  

10-15 1.15 
16-20 1.12 
21-25 1.10 
26-30 1.07 
31-35 1.05 
36-40 1.02 

40>  1.00 
 

It must be noticed that the cylindrical design strength 
provided by Eq. (62) is not very far from the cdf  given 
by the statistical approach.  Actually, by approximating 
the experimental data with a Gaussian distribution and 
interpolating the values of k  in Tab. 4, we can estimate 
k  for 4n = .  The interpolation function of equation: 

0.794772

3.06748 1.645k
n

= + , (65) 

shown in Fig. 45 together with the interpolated data, 
gives the value: 

( )4 2.664k n = = . (66) 
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Figure 45:  Interpolation of the coefficient k  ( 90%  

confidence degree) 

This second time, the two cylindrical strengths, 3cf  and 

4cf : 

2
3 46.65 cf N mm= , (67) 

2
4 48.70 cf N mm= , (68) 

can be converted into cubic strengths, 3cR  and 4cR , and 
used together with the cubic strengths 1cR  and 2cR  of 
the two cubic specimens for evaluating ckR .  The 4n =  
available cubic strengths are shown in Tab. 8. 

Table 8:  Cubic strengths for the evaluation of ckR  

1cR  
2N mm⎡ ⎤⎣ ⎦  

2cR  
2N mm⎡ ⎤⎣ ⎦  

3cR  
2N mm⎡ ⎤⎣ ⎦  

4cR  
2N mm⎡ ⎤⎣ ⎦  

54.06  58.08  56.21 58.68  
 

The result is: 
256.76 cmR N mm= , (69) 

2.09δ = , (70) 

251.20 ckR N mm= , (71) 

224.08 cdf N mm= . (72) 

The parabola-rectangle relationship given by Eqs. (56) 
and (57), with cdf  provided by Eq. (72), is shown in 
Fig. 46. 
For comparison purposes, in Fig. 46 a design relation-
ship derived from the effective laws has also been plot-
ted.  This second design relationship is given by the two 
functions: 

effσ σ=  0
001.2cε ≤ , (73) 

,
,

0.85
1.5

ck eff
cd eff

σ
σ σ= =  0 0

00 001.2 3.5cε< ≤ , (74) 

where effσ  is the average effective stress in Fig. 40 and 

,ck effσ  is the 5%  lower fractile of the average effective 

stresses ,ci effσ , evaluated in the four pseudo-horizontal 
branches of the effective laws (Tab. 9). 
 



Table 9:  Average stresses in the pseudo-horizontal 
branches of the effective laws 

1,c effσ  
2N mm⎡ ⎤⎣ ⎦  

2,c effσ  
2N mm⎡ ⎤⎣ ⎦  

3,c effσ  
2N mm⎡ ⎤⎣ ⎦  

4,c effσ  
2N mm⎡ ⎤⎣ ⎦  

55.30  57.05  49.39  54.55  
 

The statistical approach for 2.66k =  gives: 

2
, 54.07 cm eff N mmσ = , (75) 

3.29δ = , (76) 

2
, , 45.30 ck eff cm eff k N mmσ σ δ= − = , (77) 

2
, 25.67 cd eff N mmσ = . (78) 

As can be seen in Fig. 46, the parabola-rectangle rela-
tionship given by Eqs. (56) and (57) slightly overesti-
mates the initial slope and underestimates the ultimate 
design stress.  According to this analysis, we can con-
clude that the parabola-rectangle relationship is cau-
tionary as far as the ultimate stress is concerned.  It 
therefore seems that the identification procedure of the 
effective law may be employed for deriving a new pa-
rabola-rectangle relationship, to exploit the effective 
properties of concrete better. 
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Figure 46:  Comparison between the parabola-

rectangle relationship and the design relationship given 
by the effective laws 

As previously pointed out, the number of performed 
compression tests is not sufficient for giving quantita-
tive evaluations.  It follows that only a qualitative new 
proposal is possible here.  The parabola-rectangle rela-
tionship that gives a better approximation to the design 
relationship given by the effective laws in Fig. 40 is 
plotted in Fig. 47 and is expressed by the function: 

( )2
,1000 0.9 202.5c cd eff c cσ σ ε ε= −  1

450cε ≤ , (79) 

for the first branch, and by the function: 

,c cd effσ σ=  0
00

1 3.5
450 cε< ≤ . (80) 

for the second branch.  It is still a cautionary relation-
ship, but the ultimate stress has been increased by 7% . 
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Figure 47:  Comparison between the new parabola-

rectangle relationship and the design relationship given 
by the effective laws 

3.2 Rubberized concrete 

For rubberized concrete, it is reasonable to assume that 
the design relationship depends upon the percentage of 
rubber aggregates.  In the absence of a technical stan-
dard for rubberized concrete, the parabola-rectangle re-
lationship in Fig. 48 has been drafted according to Eqs. 
(56) and (57), with the four ciR  obtained as for plain 
concrete and set out in Tab. 10.   
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Figure 48:  Comparison between the parabola-

rectangle relationship and the design relationship given 
by the effective laws 



Table 10:  Cubic strengths for the evaluation of ckR  

1cR  
2N mm⎡ ⎤⎣ ⎦  

2cR  
2N mm⎡ ⎤⎣ ⎦  

3cR  
2N mm⎡ ⎤⎣ ⎦  

4cR  
2N mm⎡ ⎤⎣ ⎦  

20.10  21.81  21.05  21.40  
 

The statistical approach with 2.66k =  provides: 

221.09 cmR N mm= , (81) 

0.73δ = , (82) 

219.14 ckR N mm= , (83) 

29.00 cdf N mm= . (84) 

A possible standard for the percentage of rubber aggre-
gates used is given by the relationship: 

{ },
1 min 3;  2

0.83ck cm c lowestR f f= − + , (85) 

giving the following values for ckR  and cdf : 

217.47 ckR N mm= , (86) 

28.23 cdf N mm= . (87) 

In Fig. 48, the design relationship derived from the ef-
fective laws is given by the two functions: 

effσ σ=  0
000.88cε ≤ , (88) 

,
,

0.85
1.5

ck eff
cd eff

σ
σ σ= =  0 0

00 000.88 3.5cε< ≤ , (89) 

where effσ  is the average effective stress in Fig. 43 and 

,ck effσ  is the 5%  lower fractile of the average effective 
stresses ,ci effσ , evaluated in the four pseudo-horizontal 
branches of the effective laws (Tab. 11). 

Table 11:  Average stresses in the pseudo-horizontal 
branches of the effective laws 

1,c effσ  
2N mm⎡ ⎤⎣ ⎦  

2,c effσ  
2N mm⎡ ⎤⎣ ⎦  

3,c effσ  
2N mm⎡ ⎤⎣ ⎦  

4,c effσ  
2N mm⎡ ⎤⎣ ⎦  

21.22  21.99  19.19  20.39  
 

2
, 20.70 cm eff N mmσ = , (90) 

1.20δ = , (91) 

2
, , 17.50 ck eff cm eff k N mmσ σ δ= − = , (92) 

2
, 9.92 cd eff N mmσ = . (93) 

As can be seen in Fig. 48, in this second occasion, the 
parabola-rectangle relationship underestimates both the 
initial slope and the ultimate stress. 
The new parabola-rectangle relationship set out in Fig. 
49 is given by the function: 

( )2
,1000 1.2 360c cd eff c cσ σ ε ε= −  1

600cε ≤ , (94) 

for the first branch, and by the function: 

,c cd effσ σ=  0
00

1 3.5
600 cε< ≤ , (95) 

for the design of the second branch.  The new relation-
ship (Fig. 49) fits the initial slope well and allows for an 
ultimate stress increment of 10% . 
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Figure 49:  Comparison between the new parabola-

rectangle relationship and the design relationship given 
by the effective laws 

4 Conclusions 

The experimentation presented here has shown that the 
effective law is also monotonically non-decreasing for 
rubberized concrete, besides offering the same relation-
ship for both cubic and cylindrical specimens.  This last 
result is of particular significance, since insensitiveness 
to shape-effect is one of the principle requirements for 
constitutive parameters, thereby describing the identifi-
cation procedure of the effective law as a properly 
posed identification technique.  As a consequence of 
these findings and of further properties of the effective 



law, as set out in previous papers by the author, we may 
conclude that the question of strain-softening, widely 
discussed in Ferretti (2005) from a numerical point of 
view, may have been resolved, with the identification 
procedure of the effective law producing final experi-
mental evidence against its existence. Moreover, it has 
been also shown how the effective law is capable of 
providing an experimental evaluation of the design rela-
tionships, making it also possible to formulate new 
standards for both plain and rubberized concrete. 

5 Future developments 

The functions shown in Eqs. (94) and (95) give a good 
design relationship for the rubber percentage used in 
this experimentation only.  Further experiments with 
differing amounts of rubber aggregates are needed to 
derive a design relationship that is also a function of the 
rubber percentage. 
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